• Title/Summary/Keyword: collagen deposition

Search Result 133, Processing Time 0.024 seconds

THE HEALING EFFECTS OF LOW POWER DENSITY LASER TO THE EXPERIMENTAL PERIODONTITIS;HISTOPATHOLOGIC STUDY (저출력 레이저 조사가 성견의 실험적 치주질환 치유에 미치는 영향에 관한 조직병리학적 연구)

  • Kim, Dong-Woon;Lee, Jae-Hyun;Chung, Chin-Hyung
    • Journal of Periodontal and Implant Science
    • /
    • v.23 no.1
    • /
    • pp.16-26
    • /
    • 1993
  • In order to investigate the healing effect on inflammation and bone regeneration of low power density laser radiation in dogs, experimental periodontitis was made in dog mandibular 3rd, 4th premolars. All teeth were classified with four groups of two experimental group and control groups. The second group were irradiated on periodontitis site and the first group were control. The fourth group were irradiated on periodontitis site flap operation and the third group were flap control. Experimental groups were irradiated with GaAs low power density laser of pulse wave and continuous wave of 904nm every day by five days respectively and then control group and experimental groups were evaluated by histo-pathological study. The results were as follows : 1. Experimental periodontits site of dog were irradiated with GaAs low power laser results in reducing of pseudoepitheliomatous proliferation and inflammation at light microscope. 2. After irradiation with low power density laser, experimental groups were revealed that PDL forming activity were increased and newly formed collagen deposition were observed. 3. Low power density lsaer irradiation on experimental periodontits site after flap operation showed that decreasing of inflammation, reducing of osteoclast activity. Capillary proliferation, reduction of pseudoepitheliomatous proliferation. 4. After irradiation with low power density laser on flap experimental site, experimental groups were revealed that newly formed collagen in periodontal ligament and alveolar bone were detected on MT staining.

  • PDF

Wound healing effects of paste type acellular dermal matrix subcutaneous injection

  • Lee, Jin Ho;Kim, Jae-Won;Lee, Jun-Ho;Chung, Kyu Jin;Kim, Tae Gon;Kim, Yong-Ha;Kim, Keuk-Jun
    • Archives of Plastic Surgery
    • /
    • v.45 no.6
    • /
    • pp.504-511
    • /
    • 2018
  • Background Acellular dermal matrix (ADM) helps wound healing by stimulating angiogenesis, acting as a chemoattractant for endothelial cells, providing growth factors, and permitting a substrate for fibroblasts to attach. The current standard for using paste-type ADM (CG Paste) in wound healing is direct application over the wounds. The major concerns regarding this method are unpredictable separation from the wounds and absorption into negative-pressure wound therapy devices. This study aimed to investigate the effects of subcutaneous injection of paste-type ADM on wound healing in rats. Methods Full-thickness skin defects were created on the dorsal skin of rats. Eighteen rats were randomly divided into three groups and treated using different wound coverage methods: group A, with a saline dressing; group B, standard application of CG Paste; and group C, injection of CG Paste. On postoperative days 3, 5, 7, 10, and 14, the wound areas were analyzed morphologically. Histological and immunohistochemical tissue analyses were performed on postoperative days 3 and 7. Results Groups B and C had significantly less raw surface than group A on postoperative days 10 and 14. Collagen fiber deposition and microvessel density were significantly higher in group C than in groups A and B on postoperative days 3 and 7. Conclusions This study showed comparable effectiveness between subcutaneous injection and the conventional dressing method of paste-type ADM. Moreover, the injection of CG Paste led to improved wound healing quality through the accumulation of collagen fibers and an increase in microvessel density.

Selonsertib Inhibits Liver Fibrosis via Downregulation of ASK1/MAPK Pathway of Hepatic Stellate Cells

  • Yoon, Young-Chan;Fang, Zhenghuan;Lee, Ji Eun;Park, Jung Hee;Ryu, Ji-Kan;Jung, Kyung Hee;Hong, Soon-Sun
    • Biomolecules & Therapeutics
    • /
    • v.28 no.6
    • /
    • pp.527-536
    • /
    • 2020
  • Liver fibrosis constitutes a significant health problem worldwide due to its rapidly increasing prevalence and the absence of specific and effective treatments. Growing evidence suggests that apoptosis-signal regulating kinase 1 (ASK1) is activated in oxidative stress, which causes hepatic inflammation and apoptosis, leading to liver fibrogenesis through a mitogen-activated protein kinase (MAPK) downstream signals. In this study, we investigated whether selonsertib, a selective inhibitor of ASK1, shows therapeutic efficacy for liver fibrosis, and elucidated its mechanism of action in vivo and in vitro. As a result, selonsertib strongly suppressed the growth and proliferation of hepatic stellate cells (HSCs) and induced apoptosis by increasing Annexin V and TUNEL-positive cells. We also observed that selonsertib inhibited the ASK1/MAPK pathway, including p38 and c-Jun N-terminal kinase (JNK) in HSCs. Interestingly, dimethylnitrosamine (DMN)-induced liver fibrosis was significantly alleviated by selonsertib treatment in rats. Furthermore, selonsertib reduced collagen deposition and the expression of extracellular components such as α-smooth muscle actin (α-SMA), fibronectin, and collagen type I in vitro and in vivo. Taken together, selonsertib suppressed fibrotic response such as HSC proliferation and extracellular matrix components by blocking the ASK1/MAPK pathway. Therefore, we suggest that selonsertib may be an effective therapeutic drug for ameliorating liver fibrosis.

Secondary closure of an extraction socket using the double-membrane guided bone regeneration technique with immediate implant placement

  • Yun, Jeong-Ho;Jun, Choong-Man;Oh, Nam-Sik
    • Journal of Periodontal and Implant Science
    • /
    • v.41 no.5
    • /
    • pp.253-258
    • /
    • 2011
  • Purpose: Immediate implantation presents challenges regarding site healing, osseointegration, and obtaining complete soft-tissue coverage of the extraction socket, especially in the posterior area. This last issue is addressed herein using the double-membrane (collagen membrane+high-density polytetrafluoroethylene [dPTFE] membrane) technique in two clinical cases of posterior immediate implant placement. Methods: An implant was placed immediately after atraumatically extracting the maxillary posterior tooth. The gap between the coronal portion of the fixture and the adjacent bony walls was filled with allograft material. In addition, a collagen membrane (lower) and dPTFE membrane (upper) were placed in a layer-by-layer manner to enable the closure of the extraction socket without a primary flap closure, thus facilitating the preservation of keratinized mucosa. The upper dPTFE membrane was left exposed for 4 weeks, after which the membrane was gently removed using forceps without flap elevation. Results: There was considerable plaque deposition on the outer surface of the dPTFE membrane but not on the inner surface. Moreover, scanning electron microscopy of the removed membrane revealed only a small amount of bacteria on the inner surface of the membrane. The peri-implant tissue was favorable both clinically and radiographically after a conventional dental-implant healing period. Conclusions: Secondary closure of the extraction socket and immediate guided bone regeneration using the double-membrane technique may produce a good clinical outcome after immediate placement of a dental implant in the posterior area.

Effect of Hypoxia and Reoxygenation on Cultured Human Dermal Fetal Fibroblast (저산소 및 재산소화가 배양된 태아 섬유아세포에 미치는 영향)

  • Park, Beyoung Yun;Choi, Jong Woo;Kwark, Hyug Jun;Lee, Won Jai;Rah, Dong Kyun
    • Archives of Plastic Surgery
    • /
    • v.32 no.3
    • /
    • pp.347-356
    • /
    • 2005
  • The wound healing process in fetus is quite different form that of adult. Regeneration plays an important role and scarless wound healing is possible in early gestational fetal period. Recently, the various effects of the hypoxia and reoxygenation in the wound healing process have been investigated by many researchers. The hypoxic state is known to alter protein synthesis and gene expression of TGF-${\beta}$, VEGF. The authors hypothesize there may be differences between fetal and adult fibroblast and this difference may play a possible role in the mechanism of scarless fetal wound healing. In this study, we investigated the growth of fibroblast, the amount of collagen deposition, the amount of protein synthesis and gene expression in TGF-${\beta}$(transforming growth factor-${\beta}$), VEGF(vascular endothelial growth factor) under the various hypoxic and reoxygenation conditions. Through these processes, we tried to determine the relationships between scarless fetal wound healing and hypoxic condition. In control group, fetal and adult fibroblasts were cultured under normoxic condition. The experimental groups were allocated into four different groups. The differences in TGF-beta, VEGF under 24, 48, 72 hours were statistically investigated. Compared to adult fibroblast group, there was a statistically significant increase (p<0.01) in the rates of protein synthesis in TGF-beta and VEGF of fetal fibroblast. In this study, these results may reflect the possibility that fetal fibroblast are more susceptible to change in oxygen and has a superior rate of angiogenesis through increased VEGF expression. The possible superiority of angiogenesis in fetal fibroblast may play an important role in scarless wound healing.

The Effect of Hyaluronate-Carboxymethyl Cellulose on Tissue Adhesion after Achilles Tendon Tenorraphy in Rats (백서의 아킬레스 건 봉합 후 Hyaluronate-Carboxymethyl cellulose가 조직 유착에 미치는 영향)

  • Lee, Jung-Hee;Jeong, Bi-O;Kim, Gou-Young
    • Journal of Korean Foot and Ankle Society
    • /
    • v.13 no.1
    • /
    • pp.7-13
    • /
    • 2009
  • Purpose: The purpose of this study was to evaluate the effect of Sodium hyaluronate-Sodium carboxymethyl cellulose (HA-CMC) on tissue adhesion after tenorrhapy in tenotomized Achilles tendon of the Sprague-Dawley rat. Materials and Methods: Twenty-eight legs of 14 Sprague-Dawley rat were used in study. After tenotomy of the Achilles tendons, tenorrhaphies were performed. Simple tenorrhaphy without any other procedures were performed on the left Achilles tendons (control group), and additional HA-CMC injections were done prior to the tenorrhaphy on the right Achilles tendons (HA-CMC group). Gross and histological examinations were made to identify differences between the two groups, 1, 2, 6, 8, 10, 12 and 14 weeks respectively. Results: Distinct decrease in granulation tissues and adhesions were seen in the HA-CMC group during gross inspection at 6 and 8 week after the operation. On histological analysis of the HA-CMC group, although increased infiltrations of inflammation cells were observed during 1 week, less adhesion were seen at 6, 8 and 10 weeks after the operation. In HA-CMC group, superior healing processes were seen at 6, 8 and 10 weeks and less fibrotic changes, compared to control group, were seen at 2 and 6 weeks. Conclusion: Prevention of adjacent tissue adhesion was made possible through decrease in collagen deposition and fibrosis by injecting HA-CMC before tenorrhaphy of Achilles tendon. Also, histologically faster healing process of the collagen fibers within the Achilles tendon was observed.

  • PDF

Effect of Pycnogenol on Skin Wound Healing

  • Jeong, Moon-Jin;Jeong, Soon-Jeong;Lee, Soo-Han;Kim, Young-Soo;Choi, Baik-Dong;Kim, Seung-Hyun;Go, Ara;Kim, Se Eun;Kang, Seong-Soo;Moon, Chang-Jong;Kim, Jong-Choon;Kim, Sung-Ho;Bae, Chun-Sik
    • Applied Microscopy
    • /
    • v.43 no.4
    • /
    • pp.133-139
    • /
    • 2013
  • This study was carried out to investigate the effects of pycnogenol (PYC) on the cutaneous wound healing of the mice. The wounds were extracted on days 1, 3, 5, and 7 post-injury for histomorphometrical analysis including wound area, infiltrating inflammatory cells, wound contracture including collagen deposition. As the result, the wound area of PYC-treated group was larger than the control group on days 1 to 7. Inflammatory cells in the PYC-treated wounds were decreased at day 1 compared to the control wound tissue. From day 3 to 7, there was no significant difference between the control and the PYC-treated skin wounds. Though the degree of contraction in the PYC-treated group was lower than that of the control group from days 1 to 5, but appeared significantly higher on day 7. Compared to the control group, collagen accumulation in the PYC-treated group was higher than that of the control group from days 5 to 7. From this result, it may support the possibility that PYC would be useful agent for early inflammatory response and matrix remodeling phase of the skin wounds.

Angiogenetic Effect of Onchung-Eum on Full-thickness Skin Wound in Rats (흰쥐의 전층피부손상에서 온청음(溫淸飮)이 신생혈관형성에 미치는 영향)

  • Kim, Bum-Hoi;Lee, Hae-Woong;Sohn, Nak-Won;Park, Dong-Il1
    • Journal of Society of Preventive Korean Medicine
    • /
    • v.14 no.1
    • /
    • pp.97-110
    • /
    • 2010
  • The wound healing process can be categorized as follows : inflammation, fibroplasia, neovascularization, collagen deposition, epithelialization, and wound contraction. During the healing process, various growth factors are secreted to accelerate wound healing. Previous studies have demonstrated that endogenous growth factors, such as vascular endothelial growth factor(VEGF) are the important regulatory polypeptides for coordinating the healing process. They are released from macrophages, fibroblasts, and keratinocytes at the site of injury and participate in the regulation of reepithelization, granulation tissue formation, collagen synthesis and neovascularization. Onchung-Um has been used clinically to treat various skin diseases. In addition, Onchung-Um has been also used for congestive inflammations. In the present study, we evaluated the effects of Onchung-Um on wound healing process and wound size reduction in rats. Full-thickness skin wounds ($15mm\;{\times}\;15mm$) were created on the back of rats. Rats were then divided into 2 groups : The Onchung-Um treated group that was orally administered with a dose of 193.9mg/100g of Onchung-Um extract per day for 15 days and Control group without Onchung-Um administration. Moreover, the histological changes and VEGF immunoexpressions of two groups were estimated. In results, wound closures were significantly accelerated by oral administration of Onchung-Um extract. Furthermore, in Onchung-Um treated group, there were significant increases in fibroblast migration, epithelialization compared with the Control group. VEGF expressions were also increased in Onchung-Um treated group. This study has therefore demonstrated the Onchung-Um can significantly improve the quality of wound healing and scar formation and the oral administration of Onchung-Um extract may increase early tissue angiogenesis in the incisional wound of an experimental animal model.

Soybean Fermented with Bacillus amyloliquefaciens (Cheonggukjang) Ameliorates Atopic Dermatitis-Like Skin Lesion in Mice by Suppressing Infiltration of Mast Cells and Production of IL-31 Cytokine

  • Cho, Byoung Ok;Shin, Jae Young;Kim, Ji-su;Che, Denis Nchang;Kang, Hyun Ju;Jeong, Do-Youn;Jang, Seon Il
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.5
    • /
    • pp.827-837
    • /
    • 2019
  • The present study was conducted with the aim to investigate the ameliorative effects of a new soybean product (cheonggukjang) fermented with Bacillus amyloliquefaciens SCGB1 (SFBA) in atopic dermatitis (AD) mouse model. Visual evaluation of AD induction in the mice indicated the remarkable control of SFBA in reducing the pathological severity of AD-like skin lesions reported as the SCORAD score of AD clinical symptoms. The results revealed that SFBA reduced dorsal skin and epidermal thickness to a similar extent with prednisolone. Further analysis revealed the dominance of SFBA in restraining mast cell infiltration in the dermis; immunoglobulin-E expression in serum; and TH2 IL-4 cytokine and itch-related IL-31 cytokine in the mice skin and serum. SFBA also suppressed scratching behaviours in mice induced by compound 48/80. Further histological findings also revealed the alleviation of collagen fiber deposition in dermal skin of the AD mice model. These actions of SFBA were examined to be mediated by its suppression of the phosphorylation activation of key signalling molecules such as $NF-{\kappa}B$ and MAPK responsible for the induction of cytokine production. Thus, SFBA can be considered as a promising functional food for managing clinical, histological and immunological spectra associated with AD.

Polyphenol-rich Sargassum horneri alleviates atopic dermatitis-like skin lesions in NC/Nga mice by suppressing Th2-mediated cytokine IL-13

  • Suyama Prasansali, Mihindukulasooriya;Hyo Jin, Kim;Jinhee, Cho;Kalahe Hewage Iresha Nadeeka Madushani, Herath;Jiwon, Yang;Duong Thi Thuy, Dinh;Mi-Ok, Ko;You-Jin, Jeon;Ginnae, Ahn;Youngheun, Jee
    • ALGAE
    • /
    • v.37 no.4
    • /
    • pp.331-347
    • /
    • 2022
  • Atopic dermatitis (AD) is one of major skin inflammatory diseases characterized by excessive Th2-mediated immune responses. Recent evidence provides that interlukin-13 (IL-13) plays the role of a key Th2 cytokine that drives the inflammation underlining AD. Due to adverse effects of commercially available synthetic drugs, the need for treatments based on natural products is gaining much attention. Sargassum horneri is an edible brown algae known for beneficial bioactivities including anti-inflammation. We investigated if polyphenol-rich S. horneri extracts (SHE) could suppress AD-like skin lesions in NC/Nga mice and if that involved inhibition of the infiltration of Th2-mediated cytokine IL-13. We observed markedly increased infiltration of IL-13 positive cells in AD-like skin lesions of mice but SHE treatments decreased it. Also, the dermal expression of IL-13 was sufficient to cause inflammatory responses in mice skin resembling human AD. SHE suppressed the dermal infiltration of inflammatory cells where IL-13 plays a crucial role in skin tissues and in the recruitment of inflammatory cells. Furthermore, it was confirmed that SHE reduced T cell, dendritic cell, and macrophage populations in spleen. Moreover, SHE decreased the collagen deposition in skin and ear dermis resulting in reduced fibrosis that occurs in AD due to excessive collagen. Taken together, our results reveal that SHE suppressed the infiltration of inflammatory cells into skin dermis by decreasing the infiltration of IL-13 positive cells. Therefore, SHE could be taken as a useful therapeutic agent to alleviate AD.