• Title/Summary/Keyword: cold-stress protein

Search Result 109, Processing Time 0.024 seconds

Development of Stress-tolerant Crop Plants

  • CHOI Hyung-in;KANG Jung-youn;SOHN Hee-kyung;KIM Soo-Young
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04a
    • /
    • pp.41-47
    • /
    • 2002
  • Adverse environmental conditions such as drought, high salt and cold/freezing are major factors that reduces crop productivity worldwide. According to a survey, $50-80\%$ of the maximum potential yield is lost by these 'environmental or abiotic stresses', which is approximately ten times higher than the loss by biotic stresses. Thus, Improving stress-tolerance of crop plants is an important way to improve agricultural productivity. In order to develop such stress-tolerant crop plants, we set out to identify key stress signaling components that can be used to develop commercially viable crop varieties with enhanced stress tolerance. Our primary focus so far has been on the identification of transcription factors that regulate stress responsive gene expression, especially those involved in ABA-mediated stress response. Be sessile, plants have the unique capability to adapt themselves to the abiotic stresses. This adaptive capability is largely dependent on the plant hormone abscisic acid (ABA), whose level increases under various stress conditions, triggering adaptive response. Central to the response is ABA-regulated gene expression, which ultimately leads to physiological changes at the whole plant level. Thus, once identified, it would be possible to enhance stress tolerance of crop plants by manipulating the expression of the factors that mediate ABA-dependent stress response. Here, we present our work on the isolation and functional characterization of the transcription factors.

  • PDF

Development of Stress-tolerant Crop Plants

  • Choi, Hyung-In;Kang, Jung-Youn;Sohn, Hee-Kyung;Kim, Soo-Young
    • Proceedings of the Korean Society of Plant Biotechnology Conference
    • /
    • 2002.04b
    • /
    • pp.41-47
    • /
    • 2002
  • Adverse environmental conditions such as drought, high salt and cold/freezing are major factors that reduces crop productivity worldwide. According to a survey, 50-80% of the maximum potential yield is lost by these 'environmental or abiotic stresses', which is approximately ten times higher than the loss by biotic stresses. Thus, improving stress-tolerance of crop plants is an important way to improve agricultural productivity. In order to develop such stress-tolerant crop plants, we set out to identify key stress signaling components that can be used to develop commercially viable crop varieties with enhanced stress tolerance. Our primary focus so far has been on the identification of transcription factors that regulate stress responsive gene expression, especially those involved in ABA-mediated stress response. Be sessile, plants have the unique capability to adapt themselves to the abiotic stresses. This adaptive capability is largely dependent on the plant hormone abscisic acid (ABA), whose level increases under various stress conditions, triggering adaptive response. Central to the response is ABA-regulated gene expression, which ultimately leads to physiological changes at the whole plant level. Thus, once identified, it would be possible to enhance stress tolerance of crop plants by manipulating the expression of the factors that mediate ABA-dependent stress response. Here, we present our work on the isolation and functional characterization of the transcription factors.

  • PDF

Effect of Cold Shock on the Physiological Responses of the Cultured mullet, Mugil haematocheilus in Winter (월동기 저수온 충격에 따른 양식산 가숭어 Mugil haematocheilus의 생리생화학적 반응)

  • Kang, Duk-Young;Kang, Hee-Woong;Kim, Gyu-Hee;Jo, Ki-Che;Kim, Hyo-Chan
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.40 no.4
    • /
    • pp.226-233
    • /
    • 2007
  • Physiological responses of mullet Mugil haematocheilus to cold shock in winter were investigated. The experimental mullets were initially acclimated at $10.0^{\circ}C$ and then the water temperature was reduced to $-1.2^{\circ}C$ for cold shock experiment. The stress responses was monitored for nearly 50 hours. The parameters monitored include survival rate, plasma alanine aminotransferase (ALT), aspartate aminotransferase (AST), glucose (GLU), total protein (TP), electrolytes $(Na^+,\;K^+,\;Cl^-)$, cortisol and thyroid hormones $(TT_4,\;TT_3,\;FT_4\;and\;FT_3)$. With the exception of the TP and electrolytes, most parameters changed significantly during the cold shock. The survival rate did not change from $10^{\circ}C\;to\;-0.6^{\circ}C$, but decreased significantly below $-1.0^{\circ}C$, and was zero at $-1.2^{\circ}C$. The plasma AST and ALT concentrations increased remarkably from $2.5^{\circ}C\;to\;0.5^{\circ}C$ and from $2.5^{\circ}C\;to\;1.5^{\circ}C$, respectively, and then declined rapidly as the temperature decreased to $-1.2^{\circ}C$. The plasma GLU concentration did not change until -0.5'E, and then the concentration increased significantly at $-1.2^{\circ}C$. The plasma cortisol concentration increased remarkably from $2.5^{\circ}C\;to\;-0.5^{\circ}C$, and then declined at $-1.2^{\circ}C$. The plasma thyroid hormones showed two changes during the cold shock. Both plasma 74 concentrations increased remarkably from $2.5^{\circ}C$\;to\;0.5^{\circ}C$, then declined rapidly until $-1.2^{\circ}C$, while both plasma 73 concentrations decreased significantly from $10^{\circ}C\;to\;2.5^{\circ}C$, and then remained significantly lower than the concentration at $10^{\circ}C$.

Anti-inflammatory effects of Coptidis Rhizoma in chronic cold stress-exposed mice (만성 저온 스트레스 동물모델에서의 황련(黃連)의 항염증 효능 연구)

  • Choi, Jin Gyu;Huh, Eugene;Lee, Wonil;Kim, Yun-Kyung;Lee, Tae-Hee;Oh, Myung Sook
    • The Korea Journal of Herbology
    • /
    • v.33 no.6
    • /
    • pp.35-42
    • /
    • 2018
  • Objectives : The aim of this study was to investigate whether the extract of Coptidis Rhizoma inhibits inflammation in chronic cold stress (CCS)-exposed mice or not. Methods : Coptidis Rhizoma extract (CRE) was made by reflux with distilled water. Male ICR mice (7 weeks old) were divided randomly into 5 groups: (1) control, (2) CCS, (3) CCS+CRE 100 mg/kg, (4) CCS+CRE 300 mg/kg, (5) CCS+CRE 1,000 mg/kg groups. Mice were orally administered once a day for 14 days starting from 1 day before CCS. Group (2)-(5) were exposed to CCS conditions that maintained at $4^{\circ}C$ for 2 h once a day for 14 days. The levels of serum cortisol and hypothalamic prostaglandin E1 (PGE1) and PGE2 were measured by enzyme-linked immunosorbent assay kit. The expression levels of several pro-inflammatory factors like heat shock protein 70 (HSP70), c-fos, and nuclear factor kappa-light-chain-enhancer of activated B cells (NF-kB) were measured by western blot analysis in mouse hypothalamus. Results : Oral administration of CRE 1,000 mg/kg significantly suppressed the increase of serum cortisol levels in mice exposed to CCS. CCS-exposed mice had significantly increased the expression of HSP70, c-fos, and NF-kB in hypothalamus, while CRE treatment significantly attenuated the elevation of these pro-inflammatory factors. The ratio of PGE2/PGE1 was also higher in CCS-exposed mice than control group. CRE treatment significantly reduced the increase of PGE2/PGE1 ratio induced by CCS. Conclusion : These findings suggest that Coptidis Rhizoma may work as a potential agent to modulate inflammatory responses under the condition of cold adaptation formed by CCS.

Investigation of function and regulation of the YB-1 cellular factor in HIV replication

  • Jung, Yu-Mi;Yu, Kyung-Lee;Park, Seong-Hyun;Lee, Seong-Deok;Kim, Min-Jeong;You, Ji-Chang
    • BMB Reports
    • /
    • v.51 no.6
    • /
    • pp.290-295
    • /
    • 2018
  • Y-box binding protein 1 (YB-1) is a member of the cold-shock domain (CSD) protein superfamily. It participates in a wide variety of cellular events, including transcription, RNA splicing, translation, DNA repair, drug resistance, and stress responses. We investigated putative functions of YB-1 in HIV-1 replication. Functional studies using overexpression or knockdown of YB-1 in conjunction with transfection of proviral DNA showed that YB-1 enhances virus production. We found YB-1 regulates HIV-1 production by stimulating viral transcription using HIV-1 LTR sequence U3RU5 with Luciferase assay. We also identified a specific region from amino acids 1 to 324 of YB-1 as necessary for the participation of the protein in the production of virions.

Influence of Panax Ginseng on the Responce of Btressful Stimuli in the Experimental Animal exposed to Various Stress (인삼주정추출액이 스트레스에 폭로된 동물의 생체반응에 미치는 영향)

  • 김정진
    • Journal of Ginseng Research
    • /
    • v.3 no.2
    • /
    • pp.168-186
    • /
    • 1979
  • Three hundred gram of Korean ginseng root was extracted with 95% ethanol on a boiling water bath for about 300 hr. Evaporation of alcohol yieled 50.2g of dark brown residue which was used by dissolving 4 mg of the residue in 1 ml of physiological saline. The ginseng group and the saline group received each day 0.5 ml per 100 g body weight of ginseng extract and physiological saline, respectively. Both the ginseng and saline group with stress were exposed to positive radial acceleration (1∼29g), cold (5$^{\circ}C$, 0$^{\circ}C$ &-10$^{\circ}C$) and heat (35$^{\circ}C$) environment, and surgical stress. After termination of the last stress, the tolerance, body weight, visceral organ weight, basal metabolism rate, rectal temperature, the number of erythrocyte and leucocyte, hemoglobin level, hematocrit ratio, total serum protein content and it's fraction and the content of adrenal ascorbic acid in the experimental animal exposed to stress were measured and at the corresponding periods, the same measurements were also carried out with the ginseng and the saline groups without stress exposure (serving as control). Results obtained were as follows. 1. Administration of ginseng does depressed the decrease of the tolerance, body weight, visceral organ weight, basal metabolism rate, the number of erythrocyte, hemoglobin value, hematocrit ratio and the A/G ratio in the mice and rats exposed to various stress. 2. The change of the rectal temperature, eosinophile counts, total serum protein content and the content of adrenal ascorbic acid of ginseng group that exposured to various stress facilitates the reaction to, and accelerates the recovery from the stress. 3. Even after hypophysectomy which served the link between the central and the peripheral portion of the stress mechanism, the adrenal ascorbic acid content of ginseng group decreased significantly more than that of the saline group 30 min. after administration of ACTH, while the value approached the normal level significantly closer in the ginseng group than in the saline group 1 and 2 hr after ACTH administration. Judging from the above results, it is concluded that administration of ginseng extract tolerated the experimental animals under the environment of stressfu1 stmuli, although the ginseng has no significant influence upon the stress mechanism in the absence of stressful stimuli. The site of action of the ginseng appears to be in the peripheral portion of the stress mechanism.

  • PDF

Molecular cloning and characterization of a soybean GmMBY184 induced by abiotic stresses

  • Chung, Eun-Sook;Kim, Koung-Mee;Lee, Jai-Heon
    • Journal of Plant Biotechnology
    • /
    • v.39 no.3
    • /
    • pp.175-181
    • /
    • 2012
  • Drought and high salinity stresses often imposes adverse effects on crop yield. MYB transcription factors have been shown to be an important regulator in defense responses to these environmental stresses. In this study, we have cloned and characterized a soybean gene GmMYB184 (Glycine max MYB transcription factor 184). Deduced amino acid sequences of GmMYB184 show highest homology with that from Vitis vinifera legume plant (75%). Different expression patterns of GmMYB184 mRNA were observed subjected to drought, cold, high salinity stress and abscisic acid treatment, suggesting its role in the signaling events in the osmotic stress-related defense response. Subcellular localization studies demonstrated that the GFP-GmMYB184 fusion protein was localized in the nucleus. Using the yeast assay system, the C-terminal region of GmMYB184 was found to be essential for the transactivation activity. These results indicate that the GmMYB184 may play a role in abiotic stress tolerance in plant.

Past and Present Definitions of the Energy and Protein Requirements of Ruminants

  • Corbett, J.L.;Freer, M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.16 no.4
    • /
    • pp.609-624
    • /
    • 2003
  • The genesis of methods for defining the nutritional value of feeds and the nutrient requirements of animals, and their development in the late 19th and early 20th centuries in Europe and the USA are outlined. Current energy and protein feeding systems for ruminants are described. Particular reference is made to the Australian systems which are applicable to grazing animals as well as to those given prepared feeds, and enable the effective nutritional management of a imals at pasture by means of the decision support tool GrazFeed. The scheme for predicting intakes by cattle and sheep from pastures allows for the effects of selective grazing on the composition of the feed eaten, and for reduction in herbage intake when a supplementary feed is consumed. For herbage of any given concentration of metabolizable energy (ME) in the feed dry matter the changes with season of year in the net efficiency of use of the ME for growth and fattening and in the yield of microbial crude protein, g/MJ ME, which both vary with latitude, are defined. An equation to predict the energy requirements for maintenance (MEm) of both cattle and sheep includes predictions of the additional energy costs incurred by grazing compared with housed animals and the cost, if any, of cold stress. The equation allows for the change in MEm with feed intake. A flexible procedure predicts the composition of liveweight gain made by any given breed or sex of cattle and sheep at any stage of growth, and the variation with rate of gain. Protein requirements for maintenance, production including wool growth, and reproduction, are related to the quantities of microbial true protein and undegraded dietary protein truly digested in the small intestine.

A Novel MAP Kinase Gene in Cotton (Gossypium hirsutum L.), GhMAPK, is Involved in Response to Diverse Environmental Stresses

  • Wang, Meimei;Zhang, Ying;Wang, Jian;Wu, Xiaoliang;Guo, Xingqi
    • BMB Reports
    • /
    • v.40 no.3
    • /
    • pp.325-332
    • /
    • 2007
  • The mitogen-activated protein kinase (MAPK) cascade is one of the major and evolutionally conserved signaling pathways and plays pivotal role in the regulation of stress and developmental signals in plants. Here, a novel gene, termed Gossypium hirsutum MAPK (GhMAPK), was isolated from cotton. The full-length cDNA of GhMAPK encodes for a 372 amino acid protein that contains all 11 of the MAPK conserved subdomains and the phosphorylationactivation motif, TEY. Amino acid sequence alignment revealed that GhMAPK shared high identity with group-C MAPK in plants and showed 83~89% similarities with MAPKs from Arabidopsis, apricot, pea, petunia, and tobacco. Southern blot analysis indicated that the GhMAPK belonged to a multygene family in cotton. Two introns were found within the region of genomic sequence. Northern blot analysis revealed that the transcripts of GhMAPK accumulated markedly when the cotton seedlings were subjected to various abiotic stimuli such as wounding, cold (4$^{\circ}C$), or salinity stress; Furthermore, GhMAPK was upregulated by the exogenous signaling molecules, such as salicylic acid (SA) and hydrogen peroxide ($H_2O_2C$), as well as pathogen attacks. These results indicate that the GhMAPK, which has a high degree of identity with group-C plant MAPKs, may also play an important role in response to environmental stresses.

Cytoprotective effect of the processed Gardeniae Fructus on oxidative stress-induced gastric epithelial cells (산화스트레스를 유발한 위 상피세포에서 수치 치자의 세포 보호 효과)

  • Jong Rok, Lee;Sang Chan, Kim;Sook Jahr, Park
    • The Korea Journal of Herbology
    • /
    • v.38 no.1
    • /
    • pp.21-30
    • /
    • 2023
  • Objective : Gardeniae Fructus (GF) has bitter and cold nature. Thus, it has been traditionally prescribed in processed form roasted with ginger juice for patients with a weak stomach. This study investigated the effects of processed GF in tert-butyl hydroperoxide (tBHP)-treated gastric epithelial cells. Methods : Processed GF was made by applying 40% ginger juice or 10% ethanol for 24 h and then roasting at 150℃ for 5 minutes. Apoptosis was determined by terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) assay. Mitochondrial membrane potential (MMP) was monitored by flow cytometry using the membrane permeable fluorescent dye Rh123. Protein expression was measured by Western blot analysis. Results : Cell viability was reduced by tBHP and restored by ethanol extract of GF (GFE). In the TUNEL assay, it was found that cell death by tBHP was due to apoptosis, and GFE had an anti-apoptotic effect. Processed GF roasted with ginger juice showed the best anti-apoptotic effect. Processed GF also inhibited MMP loss and restored tBHP-induced changes in expression levels of apoptosis-related proteins. Increased ROS production and GSH depletion after tBHP treatment were significantly reduced by processed GF. In addition, tBHP-induced activation of mitogen-activated protein kinase (MAPK) was inhibited by processed GF. Conclusion : These results demonstrate that the processed GF is able to protect gastric epithelial cells from oxidative stress-induced cell death with antiapoptotic and antioxidant activity. In addition, it shows that the processing of GF, which have been traditionally used for gastrointestinal protection, partially have scientific validity.