• 제목/요약/키워드: cold-rolling

검색결과 404건 처리시간 0.024초

고온 가스질화 된 STS 430 스테인리스강의 냉간 가공성에 미치는 항온변태 열처리 시간 변화의 영향 (Effect of Isothermal Transformation Heat-treatment Time on Cold Workability of STS 430 Stainless Steel after High Temperature Gas Nitriding)

  • 김정민;현양기;송상우;김기동;손영호;성장현
    • 열처리공학회지
    • /
    • 제27권1호
    • /
    • pp.15-22
    • /
    • 2014
  • This study is to investigate the phase changes and cold workability after isothermal transformation at $780^{\circ}C$ by using the high temperature gas nitrided (HTGN) STS 430 ferritic stainless steel specimens. The phase diagram of STS 430 steel obtained by calculation showed that the phase appeared at $1100^{\circ}C$ showed as ${\alpha}+{\gamma}{\rightarrow}{\gamma}{\rightarrow}{\gamma}+Cr_2N{\rightarrow}{\gamma}+Cr_2N+CrN$ with increasing nitrogen concentration. Also, the transformation of ${\gamma}{\rightarrow}Cr_2N$ during heat treatment isothermally at $780^{\circ}C$, nitrogen pearlite with lamellar type was fully formed at the nitrogen permated surface layer for 10 hrs. However, this transformation was not completed for 1 hr, resulting nitrogen pearlite plus martensite. The cold rolled specimen of isothermally transformed at $780^{\circ}C$ for 10 hrs after high temperature gas nitriding decreased the layer thickness of nitrogen pearlite inducing the deformation of hard $Cr_2N$ phase. the dissolution rate of $Cr_2N$ phase increased rapidly with increasing cold rolling ratio. Specimens with the microstructure of nitrogen pearlite (isothermally transformed at $780^{\circ}C$ for 10 hrs) were possible to cold rolling without crack formation. However, the mixed structures of nitrogen pearlite + martensite (isothermally transformed at $780^{\circ}C$ for 1 hr) were impossible to cold deformation without cracking.

압연조건에 따른 변형률 상태의 변화와 집합조직의 형성 (Evolution of Strain States and Textures During Rolling with Various Conditions)

  • 강형구;허무영
    • 소성∙가공
    • /
    • 제15권7호
    • /
    • pp.479-484
    • /
    • 2006
  • The evolution of strain states and textures during rolling with various conditions was investigated by finite element method (FEM) simulations and measurements of rolling textures. Symmetrical rolling with a high friction gives rise to a strong variation of shear strains in rolled sample leading to the formation of texture gradients throughout the thickness layers. A small variation of shear strains during rolling with a well lubrication condition leads to the formation of a fairly homogeneous rolling texture throughout the sheet thickness. During asymmetrical rolling, a proper control of rolling parameters provides the evolution of a fairly homogeneous shear texture throughout the whole sheet thickness.

페라이트계 스테인리스 강의 열간압연 시 표면 층의 집합조직 발달에 미치는 윤활의 영향 (Effect of Lubrication during Hot Rolling on the Evolution of Textures at the surface of 18%Cr Ferritic Stainless Steel Sheet)

  • 편영범;강형구;허무영
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2008년도 춘계학술대회 논문집
    • /
    • pp.411-414
    • /
    • 2008
  • In order to study the effect of lubrication during hot rolling, ferritic stainless steel (FSS) sheet were hot-rolled with and without application of lubrication. The effect of two hot rolling processes on the evolution of texture and microstructure after hot rolling, cold rolling and subsequent recrystallization annealing was studied by means of macro-texture analysis and microstructure observations. After hot rolling, the specimen rolled with lubrication showed rolling textures at the sheet surface, while the specimen rolled without lubrication displayed shear textures in the outer layers of the sheet. Hot rolling with lubrication was beneficial to the formation of strong recrystallization textures at sheet surface. However, hot rolling with lubrication led to the formation of orientation colonies in outer thickness layers of the recrystallized sheet.

  • PDF

연속 6단 냉간압연기에서 Profile 및 형상제어 압연기술 (Technology of profile and shape control in the 6-high Tandem cold Rolling Mill)

  • 박해두
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.142-149
    • /
    • 1999
  • Strip profile and shape control is one of the most important technologies in cold mill, especially for ultra-thin and wide cold strip. The 6-high mills, both of HCMW and UCMW mill, are known to be very effective for the shape controllability. The optimized values of these factors for set-up scheduling were analyzed and found that excellent strip control would be possible by controlling the combination of the influencing factors according to hot coil profile. The important considerations for operation were discussed for individual stand.

  • PDF

연속 냉간압연 시스템을 위한 비간섭 루프형성 LQ제어기 설계 (Noninteracting and Loop-Shaping LQ Controller Design for Tandem Cold Mills)

  • 김종식;김철민
    • 대한기계학회논문집
    • /
    • 제18권10호
    • /
    • pp.2629-2639
    • /
    • 1994
  • A robust multivariable controller is synthesized for tandem cold mills. A blocked-noninteracting control method is applied for simplifying the structure of rolling control systems. And, a loop-shaping LQ control method is applied for maintaining the variation of the thickness and tension of each rolling stand as small as possible. In this paper, the effects of the design parameter on loop-shaping and the number of control inputs are evaluated. The simulation results show that the thickness and tension control accuracy of tandem cold mills can be improved by the blocked-noninteracting and compensated loop-shaping LQ controller.

마찰 압연한 AA 3003 합금의 조직 변화 (Texture of Frictionally Rolled AA 3003 Aluminum alloy)

  • 사이드무로드 아크라모프;김인수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2007년도 추계학술대회 논문집
    • /
    • pp.330-331
    • /
    • 2007
  • The effect of frictional rolling and subsequent heat treatment was studied on the evolution of texture of AA 3003 Aluminum alloy. With frictional rolling without lubrication it is possible to obtain a larger friction between roll and sample which lead to the formation of uniform rolling texture in the whole thickness layers.

  • PDF

강가공된 순수 Cu의 미세조직과 기계적 특성 평가 (Evaluation on Microstructure and Mechanical Properties of Severely Deformed Pure Cu)

  • 송국현;손현택;김대근;김한솔;김원용
    • 한국재료학회지
    • /
    • 제21권5호
    • /
    • pp.263-267
    • /
    • 2011
  • The present study was carried out to evaluate the microstructural and mechanical properties of cross-roll rolled pure copper sheets, and the results were compared with those obtained for conventionally rolled sheets. For this work, pure copper (99.99 mass%) sheets with thickness of 5 mm were prepared as the starting material. The sheets were cold rolled to 90% thickness reduction and subsequently annealed at $400^{\circ}C$ for 30 min. Also, to analyze the grain boundary character distributions (GBCDs) on the materials, the electron back-scattered diffraction (EBSD) technique was introduced. The resulting cold-rolled and annealed sheets had considerably finer grains than the initial sheets with an average size of 100 ${\mu}M$. In particular, the average grain size became smaller by cross-roll rolling (6.5 ${\mu}M$) than by conventional rolling (9.8 ${\mu}M$). These grain refinements directly led to enhanced mechanical properties such as Vickers micro-hardness and tensile strength, and thus the values showed greater increases upon cross-roll rolling process than after conventional rolling. Furthermore, the texture development of <112>//ND in the cross-roll rolling processed material provided greater enhancement of mechanical properties relative to the case of the conventional rolling processed material. In the present study, we systematically discuss the enhancement of mechanical properties in terms of grain refinement and texture distribution developed by the different rolling processes.

스테인리스 냉연공정에서 퍼지 형상제어 (A Fuzzy Shape Control Method for the Stainless Steel at the Cold Rolling Process)

  • 허윤기
    • 제어로봇시스템학회논문지
    • /
    • 제15권10호
    • /
    • pp.1062-1070
    • /
    • 2009
  • The strip shape for the stainless steel process has made an issue of the strip quality, and hence the shape control method is developed at the Sendzimir rolling mill (ZRM). ZRM is a stainless cold rolling mill and has actuators for the shape control. They are first intermediate rolls and top crown rolls, which are controlled horizontally and vertically, respectively. The shape control of the stainless steel rolling process has difficulty in obtaining the symmetrical shape. The objective of the shape control is to minimize the shape deviation and to maintain stable state, which keeps symmetrical shape pattern in the lateral direction. The method of the shape recognition employs a least squares method and neural network. The shape deviation is the difference between the target shape and actual shape and is controlled by the fuzzy shape control. The fuzzy shape control using operator's informative knowledge is proposed in this paper. The experiments are carried out online for various stainless materials and sizes. The productivity of the rolling process has increased from 9.0 to 9.4 tons per hour.

가역식 냉간압연기의 Shadow Mask재 압연기술 (Technology of Stip Rolling of Shadow Mask Steel Plate By Reversing Cold Rolling Mill)

  • 김광수;박성권;이중웅;김종호
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1999년도 제3회 압연심포지엄 논문집 압연기술의 미래개척 (Exploitation of Future Rolling Technologies)
    • /
    • pp.403-411
    • /
    • 1999
  • The steel plate for shadow mask is used in a Cathode-ray tube of TV monitor and is the strictest product in surface quality because hundreds thousand of holes are perforated in a plane of 25 ${\times}$25 inches. To mass-produce this product, a reversible cold rolling mill for silicon steel was used and the rolling technology and the activity for quality improvement are described in this work. Because the steel plate is a mild steel, which is very sensitive to strip-breakage even in a low tension, we reset the minimum tension values matching to the operating conditions. The roll mark due to the multi-segmented araangement of shape controlling roll was prevented by hardening the intermediate shape controlling roll and by changing the existing working-roll into a HSS (Hig Speed Steel) roll. The scratch caused by the speed difference between a idle roll and a strip was prevented by increasing the roll roughness. With these activities, the steel plate for shadow mask can be stable. The continuous improvement of quality is, however, required for the customer satisfaction both of domestic and overseas market.

  • PDF

Zn-15%Al 합금의 가공연화 거동 (Work Softening Behavior of Zn-15%Al alloy)

  • 전중환;성기덕;김정민;김기태;정운재
    • 열처리공학회지
    • /
    • 제18권1호
    • /
    • pp.18-23
    • /
    • 2005
  • Effect of cold rolling on microstructural changes has been investigated for a Zn-15%Al alloy to elucidate the reason for its work softening behavior. Fully annealed microstructure of the Zn-15%Al alloy is characterized by ${\eta}$ grains and (${\eta}+{\alpha}$) lamellar colonies, where ${\eta}$ and ${\alpha}$ are Zn-rich HCP and Al-rich FCC phases, respectively. The hardness decreases continuously with increasing cold rolling degree, exhibiting work softening behavior. It is revealed that during the cold rolling, (${\eta}+{\alpha}$) lamellar colonies gradually change into equiaxed ${\eta}$ and ${\alpha}$ grains due to dynamic recrystallization at room temperature, while pre-existing ${\eta}$ grains are only deformed without recrystallization. Furthermore, cold rolling causes the precipitation of dissolved Al solutes in ${\eta}$ grains. In view of these results, change of (${\eta}+{\alpha}$) phases from lamellar to equiaxed morphology, which results in structural softness and increase in equiaxed ${\eta}/{\alpha}$ grain boundaries with higher mobility, and deterioration of solution hardening by precipitation of Al solutes from ${\eta}$ grains, are thought to contribute to the work softening of Zn-15%Al alloy.