Browse > Article

Work Softening Behavior of Zn-15%Al alloy  

Jun, Joong-Hwan (Light Materials Team, Advanced Materials R&D Center, Korea Institute of Industrial Technology)
Seong, Ki-Duk (Light Materials Team, Advanced Materials R&D Center, Korea Institute of Industrial Technology)
Kim, Jeong-Min (Light Materials Team, Advanced Materials R&D Center, Korea Institute of Industrial Technology)
Kim, Ki-Tae (Light Materials Team, Advanced Materials R&D Center, Korea Institute of Industrial Technology)
Jung, Woon-Jae (Light Materials Team, Advanced Materials R&D Center, Korea Institute of Industrial Technology)
Publication Information
Journal of the Korean Society for Heat Treatment / v.18, no.1, 2005 , pp. 18-23 More about this Journal
Abstract
Effect of cold rolling on microstructural changes has been investigated for a Zn-15%Al alloy to elucidate the reason for its work softening behavior. Fully annealed microstructure of the Zn-15%Al alloy is characterized by ${\eta}$ grains and (${\eta}+{\alpha}$) lamellar colonies, where ${\eta}$ and ${\alpha}$ are Zn-rich HCP and Al-rich FCC phases, respectively. The hardness decreases continuously with increasing cold rolling degree, exhibiting work softening behavior. It is revealed that during the cold rolling, (${\eta}+{\alpha}$) lamellar colonies gradually change into equiaxed ${\eta}$ and ${\alpha}$ grains due to dynamic recrystallization at room temperature, while pre-existing ${\eta}$ grains are only deformed without recrystallization. Furthermore, cold rolling causes the precipitation of dissolved Al solutes in ${\eta}$ grains. In view of these results, change of (${\eta}+{\alpha}$) phases from lamellar to equiaxed morphology, which results in structural softness and increase in equiaxed ${\eta}/{\alpha}$ grain boundaries with higher mobility, and deterioration of solution hardening by precipitation of Al solutes from ${\eta}$ grains, are thought to contribute to the work softening of Zn-15%Al alloy.
Keywords
Zn-15%Al alloy; Work softening; Microstructure; ${\eta}$ phase; (${\eta}+{\alpha}$) Lamellar colonies; Dynamic recrystallization;
Citations & Related Records
연도 인용수 순위
  • Reference
1 M. Knepper and J. Spriestersbach, Proc. ITSC Shanghai 1997 : Surface Engineering towards the 21th, edited by X. Binishi et al., China Machine Press, 1997, p. 384
2 S. Yamamoto, T. Sakaguchi and T. Uda, J. Japan Inst. Met., 3 (1996) 247
3 S. Yamamoto, T. Uda and J. Imahori, J. Japan Inst. Met., 3 (1996) 254
4 Y. H. Zhu, H. C. Man and W. B. Lee, Mater. Sci. Eng. A, A268 (1999) 147
5 T. Kurosawa, T. Otani and K. Hoshino, J. de Physique IV, 6 (1996) C8-309
6 G. Purcek, B. S. Altan, I. Miskioglu and P. H. Ooi, J. Mater. Proc. Tech., 148 (2004) 279   DOI   ScienceOn
7 M. Furukawa, Y. Ma, Z. Horita, M. Nemoto, R. Z. Valiev and T. G. Langdon, Mater. Sci. Eng. A, A241 (1998) 122
8 T. Tanaka, K. Makii, A. Kushibe, M. Kohzu and K. Higashi, Scripta Mater., 49 (2003) 361   DOI   ScienceOn
9 E. O. Hall, Proc. Phys. Soc., B64 (1951) 747
10 N. J. Petch, J. Iron Steel Inst., 174 (1953) 25
11 Z. Ma, F. Han, J. Wei and J. Gao, Metall. Mater. Trans. A, 32A (2001) 2657
12 I. G. Ritchie, Z. L. Pan and F. E. Goodman, Metall. Trans. A, 22A (1991) 617
13 P. Yavari and T. G. Langdon, Mater. Sci. Eng., 57 (1983) 55   DOI   ScienceOn
14 P. Shariat, R. B. Vastava and T. G. Langdon, Acta Metall., 30 (1982) 285   DOI   ScienceOn
15 I. G. Ritchie and Z. L. Pan, Metall. Trans. A, 22A (1991) 607
16 K. A. Padmanabhan and G. J. Davies : Superplasticity, Springer-Verlag Berlin, Heidelberg, (1980) 1