• 제목/요약/키워드: cold fuel characteristics

검색결과 134건 처리시간 0.03초

LPG성상에 따른 세미리턴방식 LPi엔진의 시동성 및 싸이클 별 HC/NOx 배출 특성 (Effect of semi-return fuel supply system on the startability and HC/NOx emissions during cold transient starting phase in an LPi engine)

  • 김주원;최관희;명차리;박심수
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2910-2915
    • /
    • 2008
  • This paper was investigated the behaviors of the engine and combustion phenomena for various LPG compositions in the semi-return type system, which is not recircurated to LPG tank through furl rail, applied LPi engine during a cold idle condition and including a cold start of the engine. Cyclic HC and NOx emissions were measured at exhaust port to examine their formation mechanical and reduction mechanical with fast response gas analyzers. Various ignition timing is experimented to study the characteristics of combustion phenomena, HC/NOx emissions during fast idle. Also, this study was investigated start delay time, cylinder pressure, HC/NOx emissions, Mass Fraction Burned, starting time to evaluate performance of transient cold startability. Compared to the return type system, the semi-return type system have advantages in point of production cost and equivalent performance of engine starting time and pressure settling time.

  • PDF

주행모드 및 조건변화에 따른 LPG와 디젤승용차량 배출특성 비교에 관한 연구 (Investigation on the Comparison of Exhaust Emission Characteristics of Passenger Cars using LPG and Diesel Fuel in Variation of Driving Mode and Ambient Conditions)

  • 김형준;이종태;서영호;홍유덕
    • 한국분무공학회지
    • /
    • 제22권4호
    • /
    • pp.185-189
    • /
    • 2017
  • In Korea, sales of passenger cars using diesel and LPG fuels were continuously increased in recent years. From now on 2030, the registrated vehicles will close in about twenty five million in Korea. From these reason, Investigation on the comparison of exhaust emission characteristics of passenger cars using LPG and Diesel fuel in variation of driving mode and ambient conditions were conducted in this study. Exhaust emission characteristics of test vehicles were measured and analyzed by using chassis dynamometer and emission analyzer. Also, test vehicles were selected on the diesel vehicle with 1.7L engine and LPG vehicle with 2.0L engine. In order to study on emission characteristics according to driving cycles, CVS-75, NEDC, US06, SC03, Cold-FTP and HWFET were applied and the test conditions were set up the cases of A/C on and hot start. From these results, it is revealed that the NOx emission of diesel vehicle was higher than that of LPG vehicle and the case of CO emission shows the opposite patterns. In the HC emission, the emission increasing patterns not showed but the NOx emission of diesel vehicle and CO emission of LPG vehicle were showed the variation patterns according to the various driving modes.

휘발유와 LPG 자동차의 연료분사방식에 따른 극미세입자 배출 특성 (Emission Characteristics of Ultrafine particles According to Fuel Injection Type in Gasoline and LPG Vehicle)

  • 박경균;권상일;이우석;홍지형
    • 한국분무공학회지
    • /
    • 제14권4호
    • /
    • pp.184-189
    • /
    • 2009
  • Recently, ultrafine particles emitted from internal combustion engine is main concern because of its well known adverse health effects. So Europe decided to start the regulation about diesel engine particle number emissions. The nanoparticles smaller than 50nm in diameter have the ability to penetrate deep into interstitial tissue of luge, where they may cause severe respiratory inflammation and acute pulmonary toxicity. Recent studies have showed that spark ignition engines emit particles number concentration comparable to those from diesel engines with DPF under high load and rich mixture conditions, including cold starts and acceleration. So this study investigated emission characteristics of ultrafine particles according to fuel injection type in gasoline vehicles and LPG vehicles. The test vehicles were tested on CVS-75 and NEDC vehicle test mode using the chassis dynamometer, CPC system applied as a particle measuring instrument at the end of dilution tunnel. As a result, the correlation between fuel injection type and particulate emission was determined. GDI vehicle emitted 10 times higher particles than PFI vehicles, and compared to Mixer and LPGI type LPG vehicle, LPLI vehicle emitted particles high.

  • PDF

부분 예혼합 가스터빈 연소기에서의 비연소 전달함수 계측으로부터의 화염전달함수 특성 파악 (A Study of the Flame Transfer Function Characteristics using Cold-flow Transfer Function in a Partially Premixed Model Gas Turbine Combustor)

  • 주성필;김성헌;윤지수;여재익;윤영빈
    • 한국추진공학회지
    • /
    • 제21권5호
    • /
    • pp.54-60
    • /
    • 2017
  • 연소불안정 연구의 일환인 화염전달함수에서 나타나는 gain의 특성을 파악하기 위하여 비연소상태에서의 전달함수를 도입하여 화염전달함수에서의 특성과 비연소전달함수의 특성에 대한 원인을 파악하고자 하였다. 비연소 전달함수를 획득하기 위하여 질소와 이산화탄소를 활용하였으며, 입력값과 출력값을 계측하기 위하여 열선풍속계를 이용하였다. 비연소 전달함수에서의 gain과 주파수의 peak는 비활성기체의 밀도와 유량에 대하여 영향을 받는 것을 확인하였다. 또한 연료공급라인에서의 음향학적 공진주파수가 peak 주파수에 영향을 주는 것을 확인하였다.

CVS-75모드에서 사용연료에 따른 배출가스 특성분석 (Characteristics Analysis of Exhaust Emission according to Fuels at CVS-75 Mode)

  • 한성빈;김용태;이호길;강정호;정재우;정연종
    • 에너지공학
    • /
    • 제18권1호
    • /
    • pp.69-73
    • /
    • 2009
  • 자동차로부터 배출되는 배출가스의 규제가 최근 더욱 강화되고 있다. 이러한 엄격해지는 규제는 배출가스를 줄이는 대체연료의 개발에 더욱 박차를 가하게 된다. 본 연구는 가솔린, 디젤, LPG 연료를 사용하는 동급의 자동차를 이용하여 배출가스의 특성을 분석 비교하였다. 테스트 모드로는 최근 국내와 북미 배출가스의 주행모드로 사용되는 CVS-75모드를 사용하였다. 배기 특성은 주행조건에 하에서 연구되어졌다. 사용연료인 가솔린, 디젤, LPG연료에 따라 THC, CO, NOx의 배출가스의 특성을 연구했다. 연구결과, LPG연료에 비해 가솔린자동차가 9.8%의 배출가스 감소, 디젤자동차는 12.2% 증가를 나타냈다. 또한 CVS모드에서 가솔린과 LPG는 phase 1의 냉간시동구간에서 THC와 CO는 80%이상을 나타낸다.

마이크로웨이브 플라즈마를 이용한 석탄가스화 특성 연구 (The Characteristics of Coal Gasification using Microwave Plasma)

  • 김두일;이재구;김용구;윤상준
    • 한국수소및신에너지학회논문집
    • /
    • 제23권1호
    • /
    • pp.93-99
    • /
    • 2012
  • The investigation of clean and environment-friendly coal utilization technology is actively progressed due to high oil price and serious climate change caused by greenhouse gas emissions. In this study, the plasma gasification was performed using a 6kW microwave plasma unit under various reaction conditions: the particle sizes of coal ($45{\mu}m-150{\mu}m$), $O_2$/fuel ratio (0 - 1.3), and steam/fuel ratio (0 - 1.5). The $H_2$ composition decreases with decreasing coal particle size. With increasing $O_2$/fuel ratio, the $H_2$ composition in the syngas decreased while the $CO_2$ composition increased. As the steam/fuel ratio increased from 0 to 1.5, the $H_2$ composition in the syngas increased while the $CO_2$ composition decreased. From the results, it was proven that the variation of syngas composition greatly affected by $O_2$/fuel ratio than steam/fuel ratio. The $H_2$ composition in the syngas, carbon conversion, and cold gas efficiency increased with increasing plasma power.

바이오알코올 혼합연료의 엔진오일 희석특성에 대한 실험적 연구 (An Experimental Study on Characteristics of Engine Oil Diluted by a Bio-Alcohol Mixture Fuel)

  • 김현준;이호길;오세두;김신
    • Tribology and Lubricants
    • /
    • 제32권6호
    • /
    • pp.183-188
    • /
    • 2016
  • Engine oil plays an important role in the mechanical lubrication and cooling of a vehicle engine. Recently, engine development has focused on the adoption of gasoline direct injection (GDI) and turbocharging methodology to achieve high-power and high-speed performance. However, oil dilution is a problem for GDI engines. Oil dilution occurs owing to high-pressure fuel injection into the combustion chamber when the engine is cold. The chemical components of engine oil are currently developed to accommodate gasoline fuel; however, bio-alcohol mixtures have become a recent trend in fuel development. Bio-alcohol fuels are alternatives to fossil fuels that can reduce vehicle emissions levels and greenhouse gas pollution. Therefore, the chemical components of engine oil should be improved to accommodate bio-alcohol fuels. This study employs a 2.0 L turbo-gas direct injection (T-GDI) engine in an experiment that dilutes oil with fuel. The experiment utilizes a variety of fuels, including sub-octane gasoline fuel (E0) and a bio-alcohol fuel mixture (Ethanol E3~E7). The results show that the lowest amount of oil dilution occurs when using E3 fuel. Analyzing the diluted engine oil by measuring density and moisture with respect to kinematic viscosity shows that the lowest values of these parameters occur when testing E3 fuel. The reason is confirmed to influence the vapor pressure of the low concentration bio-alcohol-fuel mixture.

세 가지 유형 와류 분사기들의 미립화 특성 (Atomization Characteristics of Three Types of Swirl Injectors)

  • 정하동;안종현;안규복
    • 한국분무공학회지
    • /
    • 제28권2호
    • /
    • pp.75-88
    • /
    • 2023
  • In this paper, the atomization characteristics of bi-swirl coaxial injectors for a 420 N-class bipropellant thruster were investigated. Three types of injectors, namely closed-type, open-type, and screw-type, were manufactured and designed to have the same spray angle and injection pressure drop. Water was used as a simulant, and cold-flow tests were conducted under ambient temperature and pressure conditions. Since the inner and outer injectors were designed to be the same type, only the inner fuel injectors that were easy to measure were used. Using a phase doppler particle analyzer, the velocity and diameter of atomized droplets were measured. Closed-type swirl injector exhibited droplet distributions with relatively high velocities and small SMD compared to the other two injectors. Open-type swirl injector formed droplets with reverse velocities in the center region and had a large recirculation zone. Screw-type swirl injector showed a sharp decrease in droplet velocity and size with radial distance from the liquid film breakup point. For the same design requirements, the closed-type swirl injector has superior atomization performance.

엔진오일 내 연료성분 정량분석 (Quantitative Analysis of Fuel in Engine Oil)

  • 임영관;김지연;나용규;김종렬
    • 공업화학
    • /
    • 제28권6호
    • /
    • pp.714-719
    • /
    • 2017
  • 연료가 혼합된 엔진오일은 차량의 문제(엔진마모, 화재, 급발진 등)를 초래하여, 운전자의 안전을 위협할 수 있다. 본 연구에서는 연료가 혼합된 엔진오일의 다양한 성능을 분석하였다. 분석결과, 연료혼합 엔진오일은 인화점, 유동점, 밀도, 동점도, 저온 겉보기점도가 낮아졌다. 사구법 내마모성능시험에서는 연료가 혼합된 엔진오일이 열악한 윤활성으로 마모흔(wear scar)이 증가하였다. 또한 우리 연구팀은 ASTM D2887 방법을 적용한 고온모사증류시험(SIMDIST, simulated distillation)을 통해 엔진오일 내 연료성분을 분석하였다. SIMDIST 분석결과 연료는 엔진오일보다 짧은 머무름시간을 보였으며, 엔진오일 내 연료성분의 정량분석이 가능하였다. 이 SIMDIST 분석방법을 통해 기존 많은 분석장비, 시료양, 분석시간이 필요한 물성분석법을 대신하여 엔진오일 내 연료 오염여부 및 정도를 효과적으로 판단할 수 있을 것이다.

A Study on the Reduction of Cold Start Hydrocarbon from Gasoline Engines Using Hydrocarbon Adsorbers

  • Choi, Byung-Chul;Lee, Nam-Seog;Son, Geon-Seog
    • Journal of Mechanical Science and Technology
    • /
    • 제14권6호
    • /
    • pp.699-703
    • /
    • 2000
  • Experiments were carried out to investigate the characteristics of the hydrocarbon (HC) emissions and to reduce cold start hydrocarbons in gasoline engines. An HC adsorber was, used and it coated was by Pd/Rh catalyst with zeolite on a honeycomb monolith. The HCs were efficiently trapped at temperatures below $100^{\circ}C by physical adsorption. After adsorption, they were reduced gradually by the catalytic oxidation of Pd/Rh catalysts as the adsorber temperature increased above $100^{\circ}C. Increasing amounts of methane, ethylene and n-butane were emitted as the fuel-air mixture became richer and the engine speed decreased. As the temperature of adsorber increased, high-number carbons into low-number carbons. Thus, the C4 concentration decreased significantly during the first 30 seconds, and the C2 concentration increased continuously.

  • PDF