• Title/Summary/Keyword: cold fuel characteristics

Search Result 134, Processing Time 0.025 seconds

Effect of semi-return fuel supply system on the startability and HC/NOx emissions during cold transient starting phase in an LPi engine (LPG성상에 따른 세미리턴방식 LPi엔진의 시동성 및 싸이클 별 HC/NOx 배출 특성)

  • Kim, Ju-Won;Choi, Kwan-Hee;Myung, Cha-Lee;Park, Sim-Soo
    • Proceedings of the KSME Conference
    • /
    • 2008.11b
    • /
    • pp.2910-2915
    • /
    • 2008
  • This paper was investigated the behaviors of the engine and combustion phenomena for various LPG compositions in the semi-return type system, which is not recircurated to LPG tank through furl rail, applied LPi engine during a cold idle condition and including a cold start of the engine. Cyclic HC and NOx emissions were measured at exhaust port to examine their formation mechanical and reduction mechanical with fast response gas analyzers. Various ignition timing is experimented to study the characteristics of combustion phenomena, HC/NOx emissions during fast idle. Also, this study was investigated start delay time, cylinder pressure, HC/NOx emissions, Mass Fraction Burned, starting time to evaluate performance of transient cold startability. Compared to the return type system, the semi-return type system have advantages in point of production cost and equivalent performance of engine starting time and pressure settling time.

  • PDF

Investigation on the Comparison of Exhaust Emission Characteristics of Passenger Cars using LPG and Diesel Fuel in Variation of Driving Mode and Ambient Conditions (주행모드 및 조건변화에 따른 LPG와 디젤승용차량 배출특성 비교에 관한 연구)

  • Kim, Hyung Jun;Lee, Jongtae;Seo, Youngho;Hong, You Deug
    • Journal of ILASS-Korea
    • /
    • v.22 no.4
    • /
    • pp.185-189
    • /
    • 2017
  • In Korea, sales of passenger cars using diesel and LPG fuels were continuously increased in recent years. From now on 2030, the registrated vehicles will close in about twenty five million in Korea. From these reason, Investigation on the comparison of exhaust emission characteristics of passenger cars using LPG and Diesel fuel in variation of driving mode and ambient conditions were conducted in this study. Exhaust emission characteristics of test vehicles were measured and analyzed by using chassis dynamometer and emission analyzer. Also, test vehicles were selected on the diesel vehicle with 1.7L engine and LPG vehicle with 2.0L engine. In order to study on emission characteristics according to driving cycles, CVS-75, NEDC, US06, SC03, Cold-FTP and HWFET were applied and the test conditions were set up the cases of A/C on and hot start. From these results, it is revealed that the NOx emission of diesel vehicle was higher than that of LPG vehicle and the case of CO emission shows the opposite patterns. In the HC emission, the emission increasing patterns not showed but the NOx emission of diesel vehicle and CO emission of LPG vehicle were showed the variation patterns according to the various driving modes.

Emission Characteristics of Ultrafine particles According to Fuel Injection Type in Gasoline and LPG Vehicle (휘발유와 LPG 자동차의 연료분사방식에 따른 극미세입자 배출 특성)

  • Park, Kyoung-Gyun;Kwon, Sang-Il;Lee, Woo-Suk;Hong, Ji-Hyung
    • Journal of ILASS-Korea
    • /
    • v.14 no.4
    • /
    • pp.184-189
    • /
    • 2009
  • Recently, ultrafine particles emitted from internal combustion engine is main concern because of its well known adverse health effects. So Europe decided to start the regulation about diesel engine particle number emissions. The nanoparticles smaller than 50nm in diameter have the ability to penetrate deep into interstitial tissue of luge, where they may cause severe respiratory inflammation and acute pulmonary toxicity. Recent studies have showed that spark ignition engines emit particles number concentration comparable to those from diesel engines with DPF under high load and rich mixture conditions, including cold starts and acceleration. So this study investigated emission characteristics of ultrafine particles according to fuel injection type in gasoline vehicles and LPG vehicles. The test vehicles were tested on CVS-75 and NEDC vehicle test mode using the chassis dynamometer, CPC system applied as a particle measuring instrument at the end of dilution tunnel. As a result, the correlation between fuel injection type and particulate emission was determined. GDI vehicle emitted 10 times higher particles than PFI vehicles, and compared to Mixer and LPGI type LPG vehicle, LPLI vehicle emitted particles high.

  • PDF

A Study of the Flame Transfer Function Characteristics using Cold-flow Transfer Function in a Partially Premixed Model Gas Turbine Combustor (부분 예혼합 가스터빈 연소기에서의 비연소 전달함수 계측으로부터의 화염전달함수 특성 파악)

  • Joo, Seongpil;Kim, Seongheon;Yoon, Jisu;Yoh, Jai-ick;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.5
    • /
    • pp.54-60
    • /
    • 2017
  • In order to identify the characteristics of the flame transfer function gain, cold-flow transfer function was introduced, which is the part of the combustion instability research. Nitrogen and carbon dioxide was used to obtain the cold-flow transfer function and input/output variables was measured by hot wire anemometry. Density and fluid flow rate affect the cold-flow transfer function gain and peak frequency. In addition, acoustic resonance frequency affects the peak frequency of gain in the fuel feeding line.

Characteristics Analysis of Exhaust Emission according to Fuels at CVS-75 Mode (CVS-75모드에서 사용연료에 따른 배출가스 특성분석)

  • Han, Sung-Bin;Kim, Yong-Tae;Lee, Ho-Kil;Kang, Jung-Ho;Jeong, Jae-U;Chun, Yon-Jong
    • Journal of Energy Engineering
    • /
    • v.18 no.1
    • /
    • pp.69-73
    • /
    • 2009
  • The regulations for exhaust emission from vehicles have become much more stringent in recent years. These more stringent regulations require vehicle manufacturers to develop alternative fuels that reduce exhaust emission. This research is to analyze the characteristics of exhaust gas emission of same level vehicles that use gasoline, diesel, and LPG fuels. As for the test mode, we used the CVS-75 mode, which is the driving mode of the current domestic and North American emissions. The characteristics of the exhaust gas emitted under this driving condition was studied. We examined the emissions of THC, CO, and NOx of vehicles that use gasoline, diesel, and LPG fuels. As a result, vehicle exhaust gas emissions increased 9.8 % for vehicles using gasoline and it decreased 12.2 % for diesel-powered vehicles compared to vehicles using LPG fuel. Using gasoline and LPG fuel in the CVS-mode, over 80 % of THC and CO emission was produced for the cold start Phase 1.

The Characteristics of Coal Gasification using Microwave Plasma (마이크로웨이브 플라즈마를 이용한 석탄가스화 특성 연구)

  • Kim, Doo-Il;Lee, Jae-Goo;Kim, Yong-Ku;Yoon, Sang-Jun
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.23 no.1
    • /
    • pp.93-99
    • /
    • 2012
  • The investigation of clean and environment-friendly coal utilization technology is actively progressed due to high oil price and serious climate change caused by greenhouse gas emissions. In this study, the plasma gasification was performed using a 6kW microwave plasma unit under various reaction conditions: the particle sizes of coal ($45{\mu}m-150{\mu}m$), $O_2$/fuel ratio (0 - 1.3), and steam/fuel ratio (0 - 1.5). The $H_2$ composition decreases with decreasing coal particle size. With increasing $O_2$/fuel ratio, the $H_2$ composition in the syngas decreased while the $CO_2$ composition increased. As the steam/fuel ratio increased from 0 to 1.5, the $H_2$ composition in the syngas increased while the $CO_2$ composition decreased. From the results, it was proven that the variation of syngas composition greatly affected by $O_2$/fuel ratio than steam/fuel ratio. The $H_2$ composition in the syngas, carbon conversion, and cold gas efficiency increased with increasing plasma power.

An Experimental Study on Characteristics of Engine Oil Diluted by a Bio-Alcohol Mixture Fuel (바이오알코올 혼합연료의 엔진오일 희석특성에 대한 실험적 연구)

  • Kim, HyunJun;Lee, HoKil;Oh, SeDoo;Kim, Shin
    • Tribology and Lubricants
    • /
    • v.32 no.6
    • /
    • pp.183-188
    • /
    • 2016
  • Engine oil plays an important role in the mechanical lubrication and cooling of a vehicle engine. Recently, engine development has focused on the adoption of gasoline direct injection (GDI) and turbocharging methodology to achieve high-power and high-speed performance. However, oil dilution is a problem for GDI engines. Oil dilution occurs owing to high-pressure fuel injection into the combustion chamber when the engine is cold. The chemical components of engine oil are currently developed to accommodate gasoline fuel; however, bio-alcohol mixtures have become a recent trend in fuel development. Bio-alcohol fuels are alternatives to fossil fuels that can reduce vehicle emissions levels and greenhouse gas pollution. Therefore, the chemical components of engine oil should be improved to accommodate bio-alcohol fuels. This study employs a 2.0 L turbo-gas direct injection (T-GDI) engine in an experiment that dilutes oil with fuel. The experiment utilizes a variety of fuels, including sub-octane gasoline fuel (E0) and a bio-alcohol fuel mixture (Ethanol E3~E7). The results show that the lowest amount of oil dilution occurs when using E3 fuel. Analyzing the diluted engine oil by measuring density and moisture with respect to kinematic viscosity shows that the lowest values of these parameters occur when testing E3 fuel. The reason is confirmed to influence the vapor pressure of the low concentration bio-alcohol-fuel mixture.

Atomization Characteristics of Three Types of Swirl Injectors (세 가지 유형 와류 분사기들의 미립화 특성)

  • Hadong Jung;Jonghyeon Ahn;Kyubok Ahn
    • Journal of ILASS-Korea
    • /
    • v.28 no.2
    • /
    • pp.75-88
    • /
    • 2023
  • In this paper, the atomization characteristics of bi-swirl coaxial injectors for a 420 N-class bipropellant thruster were investigated. Three types of injectors, namely closed-type, open-type, and screw-type, were manufactured and designed to have the same spray angle and injection pressure drop. Water was used as a simulant, and cold-flow tests were conducted under ambient temperature and pressure conditions. Since the inner and outer injectors were designed to be the same type, only the inner fuel injectors that were easy to measure were used. Using a phase doppler particle analyzer, the velocity and diameter of atomized droplets were measured. Closed-type swirl injector exhibited droplet distributions with relatively high velocities and small SMD compared to the other two injectors. Open-type swirl injector formed droplets with reverse velocities in the center region and had a large recirculation zone. Screw-type swirl injector showed a sharp decrease in droplet velocity and size with radial distance from the liquid film breakup point. For the same design requirements, the closed-type swirl injector has superior atomization performance.

Quantitative Analysis of Fuel in Engine Oil (엔진오일 내 연료성분 정량분석)

  • Lim, Young-Kwan;Kim, Jiyeon;Na, Yong-Gyu;Kim, Jong-Ryeol
    • Applied Chemistry for Engineering
    • /
    • v.28 no.6
    • /
    • pp.714-719
    • /
    • 2017
  • The contaminated engine oil by fuel can intimidate driver safety due to vehicle problems such as engine abrasion, fire and sudden unintended acceleration. In this study, we investigate various functional properties of the engine oil contaminated with fuel. The test results indicated that the engine oil contaminated with fuel had relatively low values of the flash point, pour point, density, kinematic viscosity and cold cranking simulator. Furthermore, a four ball test suggested that the contaminated engine oil increased wear scar due to the poor lubricity. Moreover, SIMDIST (simulated distillation) using ASTM D2887 was applied to analyze fuel characteristics in an engine oil. The SIMDIST analysis result showed a lower carbon number, and the fuel was detected at an earlier retention time than that of using engine oil in chromatogram. Also, it is possible to quantitatively analyze for fuel contents in the engine oil. The SIMDIST method for the diagnosis of oil conditions can be used whether the fuel was involved or not, instead of analyzing other physical properties that require various analytical instruments, large volumes of oil samples, and long analysis time.

A Study on the Reduction of Cold Start Hydrocarbon from Gasoline Engines Using Hydrocarbon Adsorbers

  • Choi, Byung-Chul;Lee, Nam-Seog;Son, Geon-Seog
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.6
    • /
    • pp.699-703
    • /
    • 2000
  • Experiments were carried out to investigate the characteristics of the hydrocarbon (HC) emissions and to reduce cold start hydrocarbons in gasoline engines. An HC adsorber was, used and it coated was by Pd/Rh catalyst with zeolite on a honeycomb monolith. The HCs were efficiently trapped at temperatures below $100^{\circ}C by physical adsorption. After adsorption, they were reduced gradually by the catalytic oxidation of Pd/Rh catalysts as the adsorber temperature increased above $100^{\circ}C. Increasing amounts of methane, ethylene and n-butane were emitted as the fuel-air mixture became richer and the engine speed decreased. As the temperature of adsorber increased, high-number carbons into low-number carbons. Thus, the C4 concentration decreased significantly during the first 30 seconds, and the C2 concentration increased continuously.

  • PDF