• Title/Summary/Keyword: cold energy

Search Result 1,234, Processing Time 0.036 seconds

Design and Analysis of Desalination Process using LNG Cold Energy (LNG 냉열 기반 해수 담수화 공정의 설계 및 분석)

  • Lee, Sang Hyun;Park, Kyungtae
    • Korean Chemical Engineering Research
    • /
    • v.60 no.3
    • /
    • pp.371-376
    • /
    • 2022
  • Liquefied natural gas undergoes a process of vaporization to be supplied as city gas, which generates about 800 kJ/kg of cold energy. Currently, all of this cold energy is being dumped into the sea, resulting in a very serious energy waste from the point of view of energy recycling. In this study, a seawater desalination process that can utilize the wasted cold energy was proposed, and this process was optimized to analyze the specific power consumption and economic feasibility. As a result, the specific energy consumption of the proposed process was calculated as -5.2kWh/m3, and the production cost of the pure water was 0.148 USD/m3, confirming that it is superior to any other process developed so far.

Characteristics of Cooling Temperature of Cold Water Pipes Buried in the Wall of a Small Mobile Modular House (소형 이동식 모듈주택의 벽면에 냉수배관 매설에 의한 냉방온도 특성)

  • Cho, Dong-Hyun
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.110-117
    • /
    • 2022
  • A chiller cooler absorbs the thermal energy of water to generate cold water and supplies the generated cold water to a cold water pipe buried in the wall of a small mobile modular house to greatly increase the cooling area. An attempt was made to reduce the required cooling time significantly. A small chiller cooler suitable for the cooling load of a small mobile modular house with an area less than 3.3 m2 was employed. When cooling is done during summer using a chiller cooler installed outdoors, heat absorption energy loss occurs in the cold water pipe owing to the high temperature. To address this, a study was conducted to reduce the endothermic energy loss significantly. As the mass flow rate of the cold water flowing inside the cold water pipe increased, the temperature decrease gradient of the cold water increased. From the start of the cooling operation, the air temperature of the small mobile modular house decreased linearly in proportion to the operation time. Furthermore, the temperature of the air inside the small mobile modular house decreased in proportion to the increase in the flow of water inside the cold water pipe.

Thermodynamic Performance Analysis of Ammonia-Water Rankine Cycle and Organic Rankine Cycle Using Cold Energy of LNG (LNG 냉열을 이용하는 암모니아-물 랭킨 사이클과 유기 랭킨 사이클의 열역학적 성능 특성 해석)

  • KIM, KYOUNG HOON
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.31 no.4
    • /
    • pp.363-371
    • /
    • 2020
  • Recently, the technologies to utilize the cold energy of liquefied natural gas (LNG) have attracted significant attention. In this paper, thermodynamic performance analysis of combined cycles consisting of ammonia Rankine cycle (AWR) and organic Rankine cycle (ORC) with LNG Rankine cycle to recover low-grade heat source and the cold energy of LNG. The mathematical models are developed and the effects of the important system parameters such as turbine inlet pressure, ammonia mass fraction, working fluid on the system performance are systematically investigated. The results show that the thermal efficiency of AWR-LNG cycle is higher but the total power production of ORC-LNG cycle is higher.

Yield line mechanism analysis of cold-formed channel sections with edge stiffeners under bending

  • Maduliat, S.;Bambach, M.R.;Zhao, X.L.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.6
    • /
    • pp.883-897
    • /
    • 2012
  • Cold-formed channel sections are used in a variety of applications in which they are required to absorb deformation energy. This paper investigates the collapse behaviour and energy absorption capability of cold-formed steel channels with flange edge stiffeners under large deformation major-axis bending. The Yield Line Mechanism technique is applied using the energy method, and based upon measured spatial plastic collapse mechanisms from experiments. Analytical solutions for the collapse curve and in-plane rotation capacity are developed, and used to model the large deformation behaviour and energy absorption. The analytical results are shown to compare well with experimental values. Due to the complexities of the yield line model of the collapse mechanism, a simplified procedure to calculate the energy absorbed by channel sections under large bending deformation is developed and also shown to compare well with the experiments.

Control Strategy for Cold Air Distribution System (저온송풍 공조시스템의 열원 제어)

  • Jeong, Seok-Kwon;Kim, Dong-Gyu;kim, Jong-Soo;Park, Jong-Il
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.480-483
    • /
    • 2008
  • The cold-air distribution system is expected as an efficient method to reduce energy consumption in the air-conditioning system. We introduced some control strategies for the system by summarizing some references in the view point of energy saving. Direct digital control is specially emphasized as an important control technique for the system. Some drawbacks which habe been conventionally mentioned to apply the cold-air distribution to real fields can be solved by using the technique. The control strategy which is introduced in here will be available to build control system for the air-conditioning based on the cold-air distribution for energy saving.

  • PDF

Shielding design and analyses of the cold neutron guide hall for the KIPT neutron source facility

  • Zhong, Zhaopeng;Gohar, Yousry
    • Nuclear Engineering and Technology
    • /
    • v.50 no.6
    • /
    • pp.989-995
    • /
    • 2018
  • Argonne National Laboratory of the United States and Kharkov Institute of Physics and Technology (KIPT) of Ukraine have cooperated on the development, design, and construction of a neutron source facility. The facility was constructed at Kharkov, Ukraine, and its commissioning process is underway. The facility will be used for researches, producing medical isotopes, and training young nuclear specialists. The neutron source facility is designed with a provision to include a cryogenically cooled moderator system-a cold neutron source (CNS). This CNS provides low-energy neutrons, which will be used in the scattering experiment and material structures analysis. Cold neutron guides, coated with reflective material for the low-energy neutrons, will be used to transport the cold neutrons to the experimental site. The cold neutron guides would keep the cold neutrons within certain energy and angular space concentrated inside, while most of the gamma rays and high-energy neutrons are not affected by the cold neutron guides. For the KIPT design, the cold neutron guides need to extend several meters outside the main shield of the facility, and curved guides will also be used to remove the gamma and high-energy neutron. The neutron guides should be installed inside a shield structure to ensure an acceptable biological dose in the facility hall. Heavy concrete is the selected shielding material because of its acceptable performance and cost. Shield design analysis was carried out for the CNS guide hall. MCNPX was used as the major computation tool for the design analysis, with neutron and gamma dose calculated separately. Weight windows variance reduction technique was also used in the shield design. The goal of the shield design is to keep the total radiation dose below the $5.0{\mu}Sv/hr$ guideline outside the shield boundary. After a series of iterative MCNPX calculations, the shield configuration and parameters of CNS guide hall were determined and presented in this article.

A Basic Study on the District Cooling System of LNG Cold Thermal Energy (LNG 냉열 에너지의 지역 냉방 시스템에 관한 기반 연구)

  • Kim Chung Kyun
    • Journal of the Korean Institute of Gas
    • /
    • v.7 no.4 s.21
    • /
    • pp.36-43
    • /
    • 2003
  • This paper provides the possibility of the district cooling system by using a LNG cold thermal energy. A liquefied natural gas provides a plenty of cooling source energy during a gasification of a liquefied natural gas. In recent, an ice thermal storage system is used for cooling a building, and a deep water source cooling system has been introduced as a district cooling system in which is used to cool the office towers and other large buildings in old and new downtown. LNG cooling energy refers to the reuse of a large body of naturally cold fluids as a heat sink for process and comfort space cooling as an alternative of conventional, refrigerant based cooling systems. Coincident with significant clean energy and operating cost savings, LNG cold energy cooling system offers radical reductions in air-borne pollutants and the release of environmentally harmful refrigerants in comparison to the conventional air-conditioning system. This study provides useful information on the basic design concepts, environmental considerations and performance related to the application of LNG cold thermal energy.

  • PDF

Enhancement of the energy efficiency of hydrogen SOFC system by integrated cold energy utilization and waste heat recovery method

  • Nguyen Quoc Huy;Duong Phan Anh;Ryu Bo Rim;Lee Jin Uk;Kang Ho Keun
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2022.11a
    • /
    • pp.160-161
    • /
    • 2022
  • Hydrogen is bridge fuel with high energy content and environmentally friendly to satisfy the stringent IMO regulation relating to greenhouse gas (GHG) emissions. There is growing interest in hydrogen in numerous nations and regions illustrated by an extensive range of research and development in technology. Regarding maritime applications, researchers have recognized the utilization of hydrogen as a fuel for fuel cells, a device that converts the chemical energy of the fuel to electrical energy. Solid oxide fuel cell (SOFC), with high working temperature, is easy to combine with the waste heat recovery cycles/devices to increase output power and thermodynamic performances as well. Furthermore, the cold energy from liquid hydrogen supplied to SOFC can also be used to generate more power. In this study, we proposed a SOFC integrated system with the idea of combining the waste heat recovery from the SOFC exhaust stream and cold energy utilization from LH2. The designation is aimed to target small-scale vessel which uses electric propulsion for short distances voyage.

  • PDF

Heat Transfer Characteristics of Aluminium and FeCrAlY Foam

  • Jin, Meihua;Kim, Pil-Hwan;Lee, Hae-Jong;Jeong, Hyo-Min;Chung, Han-Shik
    • Proceedings of the SAREK Conference
    • /
    • 2008.06a
    • /
    • pp.395-401
    • /
    • 2008
  • Since metallic foam will increase the performance of heat exchanger, it have caused many researcher's attention recently. Our research base on the model that metallic foams applied to heat exchanger. In this case, there is three kind of heat transfer mechanisms, heat conduction in fibers, heat transfer by conduction in fluid phase, and internal heat change between solid and fluid phases. In this paper we study both the hydraulic and thermal aspect performance. Pressure drop along air flow direction will be presented. As thermal aspect, we first discuss the acceptance of applying thermal equilibrium among the two phases. then to calculate the dimensionless temperature profile, the heat transfer coefficient and Nu number in 14 metallic foams(7 Aluminium foams, 7 FeCrAlY foams). All these discussion is based on the same velocity u=2 m/s.

  • PDF