LNG 냉열 기반 해수 담수화 공정의 설계 및 분석

이상현 · 박경태[†]

숙명여자대학교 화공생명공학부 04310 서울특별시 용산구 청파로 47길 100 (2022년 1월 19일 접수, 2022년 2월 4일 수정본 접수, 2022년 2월 9일 채택)

Design and Analysis of Desalination Process using LNG Cold Energy

Sang Hyun Lee and Kyungtae Park[†]

Department of Chemical & Biological Engineering, Sookmyung Women's University, Seoul, 04310, Korea (Received 19 January 2022; Received in revised from 4 February 2022; Accepted 9 February 2022)

요 약

액화 천연 가스는 도시가스로 공급되기 위해 기화의 과정을 거치는데 이 때 약 800 kJ/kg의 냉열이 발생한다. 현재 이 에너지는 모두 바다로 버려지고 있어 에너지 재순환 관점에서 보면 아주 심각한 에너지 낭비를 초래하고 있다. 본 연구에서는 이 점에 착안하여 버려지는 액화 천연 가스의 냉열을 활용할 수 있는 해수담수공정을 제안하고 이 공정을 최적화하여 고유 전력 소비와 경제성에 대해 분석하였다. 그 결과 제안된 공정의 에너지 소모량은 -5.2 kWh/m³, 담수 생산 단가는 0.148 USD/m³으로 계산되어 현재까지 개발된 어떤 공정보다도 우수함을 확인하였다.

Abstract – Liquefied natural gas undergoes a process of vaporization to be supplied as city gas, which generates about 800 kJ/kg of cold energy. Currently, all of this cold energy is being dumped into the sea, resulting in a very serious energy waste from the point of view of energy recycling. In this study, a seawater desalination process that can utilize the wasted cold energy was proposed, and this process was optimized to analyze the specific power consumption and economic feasibility. As a result, the specific energy consumption of the proposed process was calculated as -5.2kWh/m³, and the production cost of the pure water was 0.148 USD/m³, confirming that it is superior to any other process developed so far.

Key words: Liquefied natural gas, Cold energy, Seawater desalination, Optimization, Economic analysis

1.서 론

지속적인 인구 증가와 함께 농업, 화학공업 그리고 최신 IT산업 에 이르기까지 담수의 필요성이 큰 산업들이 많아지는 반면 깨끗한 물의 공급은 여전히 부족하다[1]. 따라서 이러한 물 위기를 극복하 기 위해 담수 설비에 대한 요구도 자연스럽게 증가하고 있다.

해수담수 공정은 크게 분리막(membrane)을 기반으로 하는 기술 과 증발을 기반으로 하는 기술로 나누어 생각할 수 있다. 현재 가장 널리 사용되고 있는 기술은 분리막 기반의 해수 역삼투압(SWRO, Seawater Reverse Osmosis) 기술이고 전 세계 시장의 59.85%를 차 지하고 있다. 다음으로는 다단증발법(MSF. Multistage Flash)와 다 중효용법(MED, Multi-effect distillation)이 각각 25.99%와 8.2%를

E-mail: ktpark@sm.ac.kr

*이 논문은 광운대학교 고재욱 교수님의 정년을 기념하여 투고되었습니다. This is an Open-Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/bync/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

차지하고 있다[1,2-5].

그 중 역삼투압(RO, Reverse Osmosis) 기반의 해수담수 기술은 증발을 기반으로 하는 기술에 비해 고유 전력소비(SEC, Specific Energy Consumption)가 낮고 에너지 소비량이 적어 담수의 생산 단가가 낮기 때문에 빠르게 시장을 차지할 수 있었다[6]. 하지만, RO 방식의 해수담수화 기술은 최소한 역삼투압에 해당하는 만큼의 고압을 필요로 해 구조적으로 일정부분 이상 효율을 향상시키는 데 한계가 있다. 따라서, 이를 극복하기 위해 RO기술을 다양한 방식으 로 적용하려는 시도가 끊임없이 이루어지고 있다. Kim 등은 많은 하이브리드 SWRO 공정들의 SEC 데이터를 검토하고 하이브리드 SWRO 플랜트가 3~5.9 kWh/m³ 범위의 SEC를 가지며, 특히 Pressure Exchanger 장치와 결합된 SWRO 기술이 가장 낮은 SEC인 3 kWh/m³을 보인다고 밝혔다[7]. Ligaray 등은 UF-SWB (Ultrafiltration Pretreated Seawater Batteries)를 RO 시스템에 결합한 담수 공정을 제시하였고, 이 공정의 SEC를 1.35 KWh/m³까지 낮출 수 있다고 주장하였다[8]. Park 등은 낮은 온도의 해수를 사용하는 FO (Forward Osmosis)-Crystallization-RO 하이브리드 공정을 제안하였다[9]. 그들은 FO,

 $^{^{\}dagger}\ensuremath{\text{To}}$ whom correspondence should be addressed.

Crystallization, 그리고 RO의 조합을 다양하게 검토하여 SEC와 담 수 생산 단가를 계산하였고, 그 결과 SEC는 2.71 KWh/m³, 그리고 담수 생산 단가는 0.696 USD/m³까지 낮출 수 있다는 것을 밝혀냈 다. 또한, Moharram 등은 MED 공정과 RO 공정의 결합을 통해 이 집트와 같이 일조량이 많은 지역에 유용한 새로운 담소 공정을 제 안하였고 이 공정의 담수 생산 단가가 0.487 USD/m³ 이라고 발표 하였다[10].

앞에서 언급한 연구들의 공통적인 특징은 RO 기술을 이용한 담 수 생산 방식의 구조적 한계를 극복하기 위해 다양한 기술들과 RO 기술을 연계하고 있다는 것이다. 이러한 기술적 연계를 통해 RO기 술을 이용한 담수 생산 방식의 효율을 어느정도 높였지만, 여전히 3 kWh/m³에 가까운 에너지가 소모되고 있다는 점은 RO 기술이 에 너지 소모를 줄이는데 명백한 한계가 있음을 보여주고 있다. 따라 서, RO 기술 기반이 아닌 새로운 방식의 담수 생산 기술에 대한 필 요성이 점점 높아지고 있다.

그러한 맥락에서, 하이드레이트 기반 담수화(HBD) 기술이 하나의 대안으로 떠오르고 있다. 하이드레이트 기반 담수화 공정은 하이드 레이트 생성 시 물이 아닌 염들이 배제되는 원리를 이용한 담수 생 산 기법으로 기존의 담수 생산 방식과는 다르게 담수 생산 시 필요 한 에너지는 매우 낮으나 하이드레이트 형성 조건을 만들기 위해 많은 에너지가 필요한 단점이 있다[11]. 따라서 이러한 HBD 기반 의 담수 기술의 문제를 극복하기 위해 He 등은 액화 천연 가스 (LNG) 저온 에너지를 활용하는 ColdEn-HyDesal 공정을 제안하였 다[12,13]. 그들은 이 연구에서 기존의 HBD 기반 담수 공정의 냉 매 사이클을 LNG 냉열을 이용한 Propane 사이클로 대체하고 이를 통해 냉매 사이클의 필요한 압축일을 혁신적으로 줄였다. 그 결과 담수 생산 공정의 SEC는 65.15 KWh/m³에서 0.847 KWh/m³까지 감소하였고 담수 생산 단가는 1.11 USD/m³까지 줄일 수 있다고 보 고하였다.

따라서, 본 연구에서는 기존 ColdEn-HyDesal 공정의 단점을 보 완하여 새로 HBD 기반의 담수 공정을 제안하고 제된한 공정의 최 적화, 엑서지 및 경제성 분석을 진행하였다. 또한, 이 결과를 기존 의 상용화된 담수 공정들과 비교하여 제안된 공정의 우수성을 입증 하였다.

2. 연구 방법론

2-1. 공정 제안 및 분석

본 연구에서 새롭게 제안한 LNG 냉열을 이용한 HBD 기반의 담 수 공정의 개략도는 다음 Fig. 1과 같으며 이 공정에 사용된 주요

Table 1. Major assumptions

Items	Values
Stream temperature at the system boundary	288.15 K [12]
Pure water production capacity	300 tonne/h
Hydrate former	Propane
Conversion in the hydrate reactor	40% [12]
Reaction heat in the hydrate reactor	-129.2 kJ/mol [12]
Isentropic efficiency of rotating machines	75% [12,13]
Pressure drops of heat exchangers	5 kPa [12,13]
Operating conditions of the hydrate reactor	274.15 K, 400 kPa [12,13]
Operating conditions of the hydrate dissociator	279.65 K, 400 kPa [12,13]
Hydrate former to water ratio	1:17 [12]
Seawater salinity	3.5 wt%

Korean Chem. Eng. Res., Vol. 60, No. 3, August, 2022

Table 2. Major stream conditions

Stream	Composition	Mole fraction	Temperature (K)	Pressure (kPa)	Flow rate (kmol/h)
LNG1	Nitrogen	0.0015	113.5	4400	13408.7
	Methane	0.9934			
	Ethane	0.0051			
HF4	Propane	1	274	400	7000
SW1	Water	0.989	303.15	101.325	43141.3
	NaCl	0.011		101.325	
SW5	Water	0.989	303.15	101.325	111347
	NaCl	0.011		101.325	

가정을 다음 Table 1에 정리하였다.

Fig. 1에서 보듯이 LNG 흐름(LNG1, LNG2)은 HEX1과 HEX2를 통해 하이드레이트 형성제인 프로판 과 해수의 온도를 하이드레이 트 생성 조건인 274.15 K까지 낮추는데 필요한 냉열을 제공한다. 온도가 낮아진 해수(SW4)와 프로판(HF1)은 하이드레이트 형성 반 응기인 REACTOR에서 하이드레이트를 형성하며, 형성된 하이드 레이트는 해리 반응기인 DISSOCIATOR에서 다시 프로판과 담수로 분리가 된다. 이 때, 해리에 필요한 열은 해수를 통해 공급된다. 생 성된 담수는 HEX3에서 해수와 열교환을 거친 다음 외부로 나간다 (PW2). REACTOR에서 미반응한 프로판(HF2)과 DISSOCIATOR에서 담수와 분리된 프로판(HF3)는 HEX1을 통해 액화되고 REACOTR 의 재킷으로 공급되어 하이드레이트 형성 반응에서 생성되는 반응 열을 제거하고 기화된다(HF7). 기화된 프로판은 EXPANDER로 보 내져 전력을 생성하고 다시 반응기로 보내지거나(HF9) 일부는 재 순환(CHF1)된다. 이 공정에 사용된 경계 흐름의 조건들은 Table 2 에 정리하였다.

2-2. 최적화 방법론

제안된 공정의 최적화를 위해 다음과 같은 목적함수를 설정하였다.

Minimize obj.f =
$$\frac{c 전력 소비량(kW)}{$$
생성된 담수의 양($\frac{m^3}{h}$) (1)

위의 목적함수는 다음과 같은 제약사항을 가진다.

1) 압축기 및 팽창기 입/출구 흐름의 기상 분율은 1이다.

2) 펌프 입/출구 흐름의 기상 분율은 0이다.

3) 모든 열교환기의 minimum temperature approach는 2 K이다.

제약사항 1은 액체로 인해 압축기와 팽창기를 보호하기 위해, 제 약사항 2는 공동 현상으로부터 펌프를 보호하기 위해 정의되었다. 그리고 제약사항 3은 열 교환기의 현실적인 설계를 보장하기 위해 정의되었다.

최적화를 위한 공정의 결정변수는 자유도 분석을 통해 다음 결정 하였으며, Table 3에 정리하였다. 최적화 알고리즘으로는 대중적인 확률적 최적화 방법 중 하나인 PSO (Particle Swarm Optimization) 알고리즘을 사용하였으며, MATLAB과 Aspen Plus를 COM 인터 페이스로 연결하여 수행하였다. PSO 알고리즘은 전역 최적화 값을 찾는다는 것을 보장할 수 없지만 화학 공정과 같은 고도의 비선형 시스템을 처리하는데 주목할 만한 성능을 가지고 있는 것으로 보고 되고 있다[14-15]. 이 연구에 사용된 PSO 알고리즘의 매개 변수는 Table 4에 요약하였다.

Table 3. Decision variables

Decision Variables	Unit
Molar flow rate of HF4 Stream	kmol/h
Degree of subcooling of HF5 Stream	Κ
Pressure of HF6 Stream	kPa

Table 4. PSO parameters

Parameters	Values
Number of particles	$20 \times$ the number of decision variable
Maximum iteration	150
Self-adjustment weight	1.49
Social-adjustment weight	1.49

2-3. 엑서지 분석 방법론

액서지는 평형 상태에서 가역 반응으로 달성할 수 있는 유용한 일의 최대치를 계산하는 척도이다[16,17]. 액서지는 물리적 액서지 와 화학적 액서지로 나누어 생각할 수 있으며 제안된 공정에서는 화학적 반응이 없기 때문에 화학적 액서지는 고려하지 않았다. 그 리고 kinetic이나 potential 변화에 따른 액서지 변화는 크지 않으므 로 무시하면, 물리적 액서지는 다음과 같이 계산할 수 있다.

$$Ex = (h_x - h_0) - T_0(s_x - s_0)$$
⁽²⁾

여기서 h는 흐름의 엔탈피; s는 흐름의 엔트로피; T는 흐름의 온도; 아래 첨자 "0"은 엔탈피와 엔트로피의 기준 상태(298.15 K)을 나타냄. 따라서, 전체 공정의 엑서지 손실은 다음과 같다.

$$\Delta E x_{\mathcal{A}} = \sum \Delta E x_j \tag{3}$$

여기서 Δ*Ex*_{전체} 는 전체 공정의 액서지 손실; Δ*Ex_j* 는 장치 *j*의 액 서지 손실(*j*∈{팽창기, 열 교환기, 펌프, 반응기}.

각 장비의 엑서지 손실을 계산하는 방법은 다음 Table 5에 요약 하였다.

2-4. 경제성 분석 방법론

본 연구에 사용된 경제성 분석 프레임워크는 다음 Fig. 2와 같다. 경제성 분석을 위해 사용된 가정은 다음과 같다.

- · 모든 비용은 2017년도 기준으로 계산하였다.
- · 공장 가용성은 95%, 공장의 수명은 25년으로 가정하였다 [13].
- · 장치 비용(Equipment Cost, EC)는 Aspen Process Economic Analyzer를 사용하여 계산하였다.
- · 전기 비용은 2017년도 미국의 전기 비용(0.105 USD/kWh)을 반영하였다 [20].

Table 5. Equipment exergy loss calculation

Fig. 2. Economic analysis framework [13,18-19].

위의 프레임워크와 가정을 바탕으로 전체 연간 비용(Total Annualized Cost, TAC)과 담수 생산 단가는 다음과 같이 계산할 수 있다.

전체 연간 비용(TAC) =
$$\frac{ 자본 비용(CC)}{n} + 운전 비용(OC)$$
 (4)

담수 생산 단가 =
$$\frac{$$
전체 연간 비용(\$/yr)}{생산된 담수의 양 $\frac{m^3}{h}$ (5)

3. 결과 및 고찰

3-1. 최적화 결과 및 고찰

본 연구에서 제안된 공정의 최적화 결과를 Table 6 및 Table 7에

Korean Chem. Eng. Res., Vol. 60, No. 3, August, 2022

 Table 6. Optimized decision variables

Decision Variables	Before	After
	optimization	optimization
Molar flow rate of HF4 Stream (kmol/h)	6500	7023.5
Degree of subcooling of HF5 Stream (K)	70	0
Pressure of HF6 Stream (kPa)	405	774.2

정리하였다. Table 6에서 보는 바와 같이 제안된 공정의 SEC값이 음의 값(-5.2 kWh/m³)을 가지는 것을 알 수 있다. 이는 제안된 공정 이 담수와 전기를 동시에 생산할 수 있다는 것을 뜻한다. 지금까지 해수 담수 공정이 에너지 집약적이었다면, 제안된 공정은 해수 담 수 공정의 패러다임을 에너지 집약형에서 에너지 생산형으로 바꿀 수 있는 혁신적인 공정이라고 할 수 있다. 또한 제안된 공정은

Table 7. Optimization results

Equipment	Power Consumption (kWh)
P-1	91.4
P-2	81.0
P-3	75.4
EXPANDER	-1808.6
Net Power Consumption	-1560.7
SEC (kWh/m ³)	-5.2

Fig. 3. Exergy analysis results after optimization.

LNG 냉열을 사용하기 때문에 추가적인 에너지원이 필요하지 않다는 장점도 있다.

3-2. 엑서지 분석 결과 및 고찰

최적화된 공정의 엑서지 분석 결과를 Fig. 3에 나타내었다. 그림 에서 볼 수 있듯이 열교환기가 엑서지 손실의 주요 원인이며 그 중 HEX1에서 발생하는 엑서지 손실이 전체 엑서지 손실의 79.6%를 차지함을 알 수 있다. 이는 HEX1에서 하이드레이트 형성제인 프로 판을 액화되면서 큰 duty와 LMTD (log mean temperature difference) 값을 가지기 때문이다. 각 열교환기의 duty와 LMTD값은 Table 8에 정리하였다. Fig. 3과 Table 8에서 보듯이 열교환기의 duty와 LMTD값이 클수록 엑서지 손실도 큰 것을 알 수 있다.

Table 8. Duty	and LMTD	of major	heat exchangers
---------------	----------	----------	-----------------

Equipment	Duty (MW)	LMTD (K)
HEX1	33.8	93.71
HEX2	11.4	15.31
HEX3	16.6	25.83

Table 10. Minimum Selling Prices for major desalination processes [7,13,2

Table 9. Economic analysis result after optimization

Cost (MM USD)
8.928
6.763
1.353
0.812
0.013
-1.063
0.941
0.135
0.371
0.148

3-3. 경제성 분석 결과 및 고찰

본 연구에서 제안된 담수 공정의 최적화 결과를 바탕으로 경제성 분석을 수행하였다. 경제성 분석 결과는 다음 Table 8에 정리하였 다. Table 9에서 확인할 수 있듯이 제안된 담수 공정의 담수 생산 단가는 0.148 USD/m³이다. 특히, 생성된 전기에서 얻는 수익으로 인해 변동운전비용이 음수가 된 점이 담수 생산 단가를 낮추는데 큰 기여를 한 것으로 보인다.

이 결과를 다른 해수 담수화 공정들과 비교를 해보았고 그 결과는 Table 9에 정리하였다. Table 10에서 확인할 수 있듯이 본 연구에서 제안된 담수 공정은 다른 담수화 공정에 비해 확연히 낮은 담수 생 산 단가를 나타내고 있다.

4. 결 론

본 연구에서는 LNG 냉열과 하이드레이트를 이용한 새로운 해수 담수 공정을 제안하고 제안된 공정의 적용 가능성을 검토하기 위해 최적화, 엑서지 및 경제성 분석을 수행하였다. 그 결과 시간당 300 톤의 담수를 생산할 수 있는 공정의 에너지 소모량은 -5.2 kWh/m³ 으로 담수 1 m³당 전기 5.2 kWh를 생성할 수 있는 에너지 생산적 인 공정임을 밝혔고 이를 이용해 경제성 분석을 수행한 결과 담수 생산 단가는 0.148 USD/m³으로 지금까지 제안된 다른 해수 담수 공정보다 훨씬 낮은 담수 생산 단가를 나타냄을 알 수 있었다. 엑서 지 분석을 통해서는 제안된 공정의 엑서지 효율을 높이기 위해서는 하이드레이트 형성제의 액화를 담당하는 열교환기(HX1)의 구조적 인 변화가 필요함을 알 수 있었다.

Table 10. Minimum Sening Prices for major desaination processes [7,13,21]			
Туре	Capacity (ton/hr)	Minimum Selling Price (USD/m ³)	
Multistage Flash (MSF)	979–22,000	0.52–1.75	
	1,042	1.10	
Multi Effect Distillation (MED)	3,792–13,333	0.52-1.01	
	50-2,292	0.95–1.5	
	458	0.80	
Reverse Osmosis (RO)	4,167–13,333	0.45–0.66	
	625–2,500	0.48-1.62	
	250	0.70	
	41.67–200	0.70-1.72	
ColdEn-HyDesal	100–1,000	0.69–1.61	
This study	300	0.148	

감 사

이 논문은 광운대학교 화학공학과 고재욱 교수님의 정년을 기념 하여 투고되었습니다. 그 동안 후학 양성을 위해서 노고를 아끼지 않으신 교수님의 은혜에 감사드립니다.

References

- Ghaffour, N., Missimer, T. M. and Amy, G. L., "Technical Review and Evaluation of the Economics of Water Desalination: Current and Future Challenges for Better Water Supply Sustainability," *Desalination*, **309**, 197-207(2013).
- Reddy, K. V. and Ghaffour, N., "Overview of the Cost of Desalinated Water and Costing Methodologies," *Desalination*, 205, 340-353(2007).
- Sommariva, C., Hogg, H. and Callister, K., "Cost Reduction and Design Lifetime Increase in Thermal Desalination Plants: Thermodynamic and Corrosion Resistance Combined Analysis for Heat Exchange Tubes Material Selection," *Desalination*, 158, 17-21(2003).
- Al-Sahali, M. and Ettouney, H., "Developments in Thermal Desalination Processes: Design, Energy, and Costing Aspects," *Desalination*, 214, 227-240(2007).
- Al-Karaghouli, A. and Kazmerski, L. L., "Energy Consumption and Water Production Cost of Conventional and Renewableenergy-powered Desalination Processes," *Renewable and Sustainable Energy Reviews*, 24, 343-356(2013).
- Rostamzadeh, H., Ghiasirad, H., Amidpour, M. and Amidpour, Y., "Performance Enhancement of a Conventional Multi-effect Desalination (MED) System by Heat Pump Cycles," *Desalination*, 477, 114261(2020).
- Kim, J., Park, K., Yang, D. R. and Hong, S., "A Comprehensive Review of Energy Consumption of Seawater Reverse Osmosis Desalination Plants," *Appl. Energy*, 254, 113652(2019).
- Ligaray, M., Kim, N., Park, S., Park, J.-S., Park, J., Kim, Y. and Cho, K. H., "Energy Projection of the Seawater Battery Desalination System Using the Reverse Osmosis System Analysis Model," *Chem. Eng. J.*, 395, 125082(2020).
- Park, K., Kim, D. Y., Jang, Y. H., Kim, M., Yang, D. R. and Hong, S., "Comprehensive Analysis of a Hybrid FO/crystallization/RO Process for Improving Its Economic Feasibility to Seawater Desalination," *Water Res.*, **171**, 115426(2020).
- Moharram, N. A., Bayoumi, S., Hanafy, A. A. and El-Maghlany, W. M., "Hybrid Desalination and Power Generation Plant Utilizing Multi-Stage Flash and Reverse Osmosis Driven by Parabolic Trough Collectors," *Case Stud. Therm. Eng.*, 23, 100807 (2021).

- Babu, P., Nambiar, A., He, T., Karimi, I. A., Lee, J. D., Englezos, P. and Linga, P., "A Review of Clathrate Hydrate Based Desalination To Strengthen Energy–Water Nexus", *ACS Sustainable Chem. Eng.*, 6, 8093-8107(2018).
- He, T., Nair, S. K., Babu, P., Linga, P. and Karimi, I. A., "A Novel Conceptual Design of Hydrate Based Desalination (HyDesal) Process by Utilizing LNG Cold Energy, *Appl. Energy*, 222, 13-24(2018).
- Chong, Z. R., He, T., Babu, P., Zheng, J. and Linga, P., "Economic Evaluation of Energy Efficient Hydrate Based Desalination Utilizing Cold Energy from Liquefied Natural Gas (LNG)," *Desalination*, 463, 69-80(2019).
- Koo, J., Oh, S.-R., Choi, Y.-U., Jung, J.-H. and Park, K., "Optimization of an Organic Rankine Cycle System for an LNG Powered Ship," *Energies*, 12, 1933(2019).
- Park, K. and Won, W., "Effects of Varying the Ambient Temperature on the Performance of a Single Mixed Refrigerant Liquefaction Process," *Journal of Natural Gas Science and Engineering*, 34, 958-968(2016).
- Remeljej, C. and Hoadley, A., "An Exergy Analysis of Smallscale Liquefied Natural Gas (LNG) Liquefaction Processes," *Energy*, **31**, 2005-2019(2006).
- Akbari, N., "Introducing and 3E (energy, exergy, economic) Analysis of An Integrated Transcriptical CO₂ Rankine Cycle, Stirling Power Cycle and LNG Regasification Process," *Applied Thermal Engineering*, 140, 442-454(2018).
- Wade, N. M., "Distillation Plant Development and Cost Update," Desalination, 136, 3-12(2001).
- Bhojwani, S., Topolski, K., Mukherjee, R., Sengupta, D. and El-Halwagi, M. M., "Technology Review and Data Analysis for Cost Assessment of Water Treatment Systems," *Sci. Total Environ.*, 651, 2749-2761(2019).
- Wang, Q., "Investigation of the Reduced Specific Energy Consumption of the RO-PRO Hybrid System Based on Temperature-enhanced Pressure Retarded Osmosis," *Journal of Membrane Science*, 14, 439-452(2019).
- Karagiannis, I. C., and Soldatos, P. G., "Water Desalination Cost Literature: Review and Assessment," *Desalination*, 223, 448-456 (2008).

Authors

Sang Hyun Lee: Researcher, Department of Chemical & Biological Engineering, Sookmyung Women's University, Seoul, 04310, Korea; kiwi652@sm.ac.kr

Kyungtae Park: Assistant Professor; Department of Chemical & Biological Engineering, Sookmyung Women's University, Seoul, 04310, Korea; ktpark@sm.ac.kr