• Title/Summary/Keyword: cold energy

Search Result 1,251, Processing Time 0.023 seconds

Study of Energy Separation Mechanism in Vortex Tube by CFD (볼텍스 튜브의 에너지 분리 현상에 관한 수치해석 연구)

  • Choi, Won-Chul;Chung, Myung-Kyoon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.2
    • /
    • pp.92-99
    • /
    • 2008
  • The "energy separation phenomenon" through a vortex tube has been a long-standing mechanical engineering problem whose operational principle is not yet known. In order to find the operational principle of the vortex tube, CFD analysis of the flow field in the vortex tube has been carried out. It was found that the energy separation mechanism in the vortex tube consists of basically two major thermodynamic-fluid mechanical processes. One is the isentropic expansion process at the inlet nozzle, during which the gas temperature is nearly isentropically cooled. Second process is the viscous dissipation heating due to the high level of turbulence in both flow passages toward cold gas exit as well as the hot gas exit of the vortex tube. Since the amount of such a viscous heating is different between the two passages, the gas temperature at the cold exit is much lower than that at the hot exit.

A study of energy saving and long conservation in construction of rock store house (암반 저장창고 건설을 통한 에너지 절감과 장기보존에 대한 연구)

  • 최예환;채경희
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.210-216
    • /
    • 1998
  • The most important thing to consider in cold store design are to save cooling energy consumption and to keep goods freshly. Specially there are many efforts to save energy with cold store in Korea. A building energy simulation program should be used to optimally select a cooling system to match the criteria of cooling rate and storage rate in a given cool crop storage building and HVAC system. The low maintenance costs, high degree of safety and environmental impacts are also favouring the underground solution. There are obviously a lot of possibility for cost-effective storage of cooled or frozen goods or liquids in ground water rock.

  • PDF

Chip-Tool Friction and Shear Characteristics of Cold Drawn Free Machining Steels in Turning (냉각인발된 쾌삭강의 외경선삭시 칩-공구 마찰 및 전단 특성)

  • Lee, Young-Moon;Cho, Sam-Kyu;Choi, Soo-Joon;Song, Tae-Seong;Park, Tae-Joon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.12
    • /
    • pp.198-203
    • /
    • 1999
  • In this study, chip-tool friction and shear characteristics of cold drawn free machining steels in turning were assessed. To do this, a newly developed equivalent oblique cutting model was adopted. And for comparison with those of free machining steels, chip-tool friction and shear characteristics of conventional carbon steels were also investigated. The Pb-S free machining steel shows superior machinability to others. In case of the Bi-S free machining steel, the shear stress and the specific friction energy are relatively lower than those of conventional carbon steels, but its shear strain is relatively high, so it does not show any remarkable improvement of machinability.

  • PDF

Best Estimate Small Break LOCA Analysis for KNGR SIS Optimization

  • Song, Jin-Ho;Lim, Hong-Sik;Bae, Kyoo-Hwan;Lee, Joon
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05b
    • /
    • pp.417-422
    • /
    • 1996
  • The KNGR has an advanced ECCS design feature which employs four mechanically-separated SI trains where each train consisting of one HPSI pump and one SIT injects ECC water directly into the reactor vessel downcomer annulus. To demonstrate that the KNGR ECCS design features meet the EPRI ALWR requirements of no core uncovery for a break of up to 6 inch diameter, small break LOCA cases with various break sizes were analyzed using a best-estimate analytical procedure. Two kinds of break locations are considered: cold leg and DVI line breaks. It was observed that the KNGR ECC design can tolerate a cold leg break of up to 10 inches with no core uncovery. However. since DVI line break with 6 inch diameter undergoes slight core uncovery. further investigation is required for KNGR SIS optimization.

  • PDF

The Influence of Ranque-Hilsch Effect and Joule-Thomson Effect to Energy Separation in a Vortex Tube (보텍스튜브에서 랭퀴-힐쉬효과와 줄-톰슨효과가 에너지분리에 미치는 영향)

  • 유갑종;방창훈;김병하
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.12 no.8
    • /
    • pp.703-710
    • /
    • 2000
  • Energy separation characteristic occurring in a counterflow vortex tube was studied experimentally, where air, $C_2$, and R22 were used as working fluids. The experiments were carried out with pressure ratio from 3 to 8 and cold mass fraction(y) from 0.1 to 0.9. As results, Ranque-Hilsch effect showed different results from adiabatic expansion process. Temperature difference in vortex tube outlet was affected by Joule-Thomson effect as well as Ranque-Hilsch effect. The more effective the energy separation was, the more increased the entropy in the cold oulet of vortex tube was.

  • PDF

Experimental Study to Nozzle of Vortex Tube (보텍스튜브의 노즐에 대한 실험적 연구)

  • Riu, K.J.;Bang, C.H.
    • Solar Energy
    • /
    • v.19 no.4
    • /
    • pp.1-10
    • /
    • 1999
  • The phenomena of energy separation through the vortex tube was investigated experimentally, to see the effect of nozzle area ratio and partial admission rate on the energy separation and cooling capacity. The experiment was tarried out with various nozzle area ratios from 0.031 to 0.232 and partial admission rate from 0.176 to 0.956 by varying input pressure($0.2{\si\m}0.5$ MPa) and cold air mass fraction($y=0.1{\sim}1.0$). From the experimental result, we found the optimum nozzle area ratio and the effective partial admission rate for the available use and best cooling performance in given operation condition. While the maximum drop of cold air temperature was observed at around y=0.3 and $S_n=0.155$, the maximum cooling capacity was observed at around y=0.6 and $S_n=0.094$.

  • PDF

Stability of superconductor by integration formula

  • Seol, S.Y.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.3
    • /
    • pp.1-5
    • /
    • 2019
  • The superconductor stability theories are consistently described by the integral formula. If the defined stability function is a simple decreasing function, it becomes a cryogenic stability condition. If the stability function has a maximum value and a minimum value, and the maximum value is less than 0, then it is a cold-end recovery condition. If the maximum value is more than 0, it can be shown that the unstable equilibrium temperature, that is, the MPZ (minimum propagation zone) temperature distribution can exist. The MPZ region is divided into two regions according to the current ratio. At the low current ratio, the maximum dimensionless temperature is greater than 1, and at the relatively high current ratio, the maximum dimensionless temperature is less than 1. In order to predict the minimum quench energy, the dimensionless energy was obtained for the MPZ temperature distribution. In particular, it was shown that the dimensionless energy can be obtained even when the MPZ maximum temperature is 1 or more.

Photochemical Response in 0-Year-Old and 1-Year-Old Needles of Picea glehnii during Cold Acclimation and Low Temperature

  • Bae, Jeong-Jin;Hara, Toshihiko;Choo, Yeon-Sik
    • Journal of Ecology and Environment
    • /
    • v.31 no.4
    • /
    • pp.317-325
    • /
    • 2008
  • P. glehnii, an evergreen conifer found in northern areas, is known as a cold-resistant species. In this experiment, we measured the water content, PSⅡ efficiency, chlorophyll fluorescence, pigments of the xanthophyll-cycle and activity of enzymes of the ascorbate-glutathione cycle during cold acclimation and at subsequent low-temperature conditions to examine the importance of acclimation to cold tolerance. P. glehnii showed a decrease in PSⅡ efficiency (especially in Fv) during cold acclimation and at subsequent low temperatures. However, cold-acclimated needles showed higher PSⅡ efficiency at low temperatures than nonacclimated needles. In addition, 0-YON (first-year needles) showed an increase in $\beta$-carotene and lutein, while 1-YON (one-year-old needles) immediately developed an antioxidant mechanism in the ascorbate-gluthathione cycle as soon as they were exposed to low temperature and both 0-YON and 1-YON showed increased zeaxanthin and de-epoxidation ratios at continuous low temperature. Based on our results, we suggest that P. glehnii maintain PSⅡ efficiency at low temperature by effectively protecting the photosynthetic apparatus from photo-damage by rapid induction of an antioxidant mechanism in 1-YON and dissipation of excess energy by $\beta$-carotene and lutein in 0-YON.

Repair of Mold by Cold Spray Deposition and Mechanical Machining (저온 분사 적층과 절삭가공을 이용한 금형보수 사례연구)

  • Kang Hyuk-Jin;Jung Woo-Gyun;Chu Won-Sik;Ahn Sung-Hoon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.7 s.184
    • /
    • pp.101-107
    • /
    • 2006
  • Cold gas dynamic spray or cold spray is a novel manufacturing method for coatings. Cold spray is a high rate and direct material deposition process that utilizes the kinetic energy of particles sprayed at high velocity (300-1,200m/s). In this research, a technique to repair the damaged mold by cold spray deposition and mechanical machining was proposed. An aluminum 6061 mold with three-dimensional surface was fabricated, intentionally damaged and material-added by cold spray, and its original geometry was re-obtained successfully by Computer Numerical Control (CNC) machining. To investigate deformation of material caused by cold spray, deposition was conducted on thin aluminum plates ($100mm{\times}100mm{\times}3mm$). The average deformation of the plates was $205{\sim}290{\mu}m$ by Coordinate Measurement Machine (CMM). In addition, the cross section of deposited layer was analyzed by scanning electron microscopy (SEM). To compare variation of hardness, Vickers hardness was measured by micro-hardness tester.