• Title/Summary/Keyword: coil constant

Search Result 163, Processing Time 0.027 seconds

A 6.78 MHz Constant Current and Constant Voltage Wireless Charger for E-mobility Applications (E-모빌리티 응용을 위한 6.78MHz 정전압 정전류 무선 충전기)

  • Tran, Manh Tuan;Choi, Woojin
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.142-144
    • /
    • 2019
  • Nowadays, multi-MHz wireless power transfer (WPT) system has received a great concern of study due to its desirable characteristics such as user convenience, system compact and better safety as compared to the conventional DC-DC with cord. This paper presents a solution for WPT Lithium Batteries charger with Constant Current (CC) and Constant Voltage (CV) charging process. The proposed system consists of a high frequency class D power amplifier, a pair of PCB coil, transformable high-order resonant network and a full-bridge rectifier. The charger can be implemented CC /CV charging profile thanks to automatic reconfigurable resonant compensator. Therefore, the battery can be fully charged without the help of an additional DC/DC converter. The simulation and 50W-6.78-MHz hardware experimental results are presented to verify the feasibility of the proposed method and to evaluate the performance of the proposed wireless battery charger.

  • PDF

The Design and Characteristic Analysis of Moving Coil Type LDM by thrust constant (추력정수에 의한 가동코일형 LDM의 특성해석과 설계)

  • Ryu, J.S.;Baek, S.H.;Kim, Y.;Yoon, S.Y.;Maeng, I.J.;Jung, G.C.
    • Proceedings of the KIEE Conference
    • /
    • 1998.07a
    • /
    • pp.196-199
    • /
    • 1998
  • LDM(Linear DC Motor) are used in high speed, high-precision position control system. Because of these advatages, LDM has already used in the motor of pen-recorder, magnetic-disk devices. Under the limited dimension, we propose the design method of LDM by magnetic circuit. In this paper, a relation between the thrust constant and size of a LDM that is moving coil type with unipolar is described, which is defined as a simple relational equation. To maximize the rate of thrust to the volume of LDM, the magnetic flux density in the yoke is adjusted to the value of magnetic equation. By the magnetic field analysis(FEM), the validity of the equation is confirmed.

  • PDF

Analysis of Coupling Loss with Size and Material in the KSTAR PF Superconducting Coils (KSTAR PF 초전도자석의 크기 및 재료에 따른 결합손실 특성 분석)

  • Lee, H.J.;Chu, Y.;Lee, S.;Park, Y.M.;Park, H.T.;Oh, Y.K.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.11 no.3
    • /
    • pp.1-5
    • /
    • 2009
  • It is important to predict AC loss in $Nb_3Sn$ and NbTi cable-in-conduit-conductor (CICC) reliably for the design and operation of large superconducting coils. The hysteresis loss in the superconducting filaments and coupling loss within strands and among strands in a cable or composite are dominant ac losses in superconducting magnets. The coupling loss in a superconductor can be characterized by identifying the coupling constant time $n{\tau}$. To reduce the coupling loss, all the strands (superconductor and Cu) in KSTAR (Korea Superconducting Tokamak Advance Research) are chromium plated with thickness of $l{\pm}0.5{\mu}m$. The ac losses of PF1, PF5 and PF6 coils has been measured by calorimetric method while applying trapezoidal current pulses with various ramp rate from 0.5 kA/s to 2 kA/s. The coupling time constants for $Nb_3Sn$ coils are $25{\sim}55$ ms and the values are not co-related with the coil size, the time constants for NbTi coil is 30 ms.

Design of a Wireless Intraocular Pressure Sensor Based on MEMS Technology (안압의 비접촉 검출을 위한 MEMS 기반의 센서 설계)

  • Kang, Buung-Joo;Park, Jong-Hoon;Lee, So-Hyun;Kang, Ji-Yoon;Park, Chang-Kun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.15 no.4
    • /
    • pp.905-912
    • /
    • 2011
  • Interaocular pressure (IOP) sensor and external coil to detect the resonance frequency of the IOP sensor are designed and implemented using MEMS technology. The IOP sensor is designed using 3-D electromagnetic (EM) simulation. The resonance frequency of IOP sensor needs to be lower than that of the external coil. Additionally, the resonance frequency of the IOP sensor needs to be located near the resonance frequency of the coil to get the sufficient amplitude of phase variation. The frequency where the phase peak appears must be constant according to the distance between the IOP sensor and the external coil. From the measurement results, we demonstrated that the designed IOP sensor has the same resonance frequency with various distances between the IOP sensor and the coil.

Reduction of Electromagnetic Field from Wireless Power Transfer Using a Series-Parallel Resonance Circuit Topology

  • Kim, Jong-Hoon;Kim, Hong-Seok;Kim, In-Myoung;Kim, Young-Il;Ahn, Seung-Young;Kim, Ji-Seong;Kim, Joung-Ho
    • Journal of electromagnetic engineering and science
    • /
    • v.11 no.3
    • /
    • pp.166-173
    • /
    • 2011
  • In this paper, we implemented and analyzed a wireless power transfer (WPT) system with a CSPR topology. CSPR refers to constant current source, series resonance circuit topology of a transmitting coil, parallel resonance circuit topology of a receiving coil, and pure resistive loading. The transmitting coil is coupled by a magnetic field to the receiving coil without wire. Although the electromotive force (emf) is small (about 4.5V), the voltage on load resistor is 148V, because a parallel resonance scheme was adopted for the receiving coil. The implemented WPT system is designed to be able to transfer up to 1 kW power and can operate a LED TV. Before the implementation, the EMF reduction mechanism based on the use of ferrite and a metal shield box was confirmed by an EM simulation and we found that the EMF can be suppressed dramatically by using this shield. The operating frequency of the implemented WPT system is 30.7kHz and the air gap between two coils is 150mm. The power transferred to the load resistor is 147W and the real power transfer efficiency is 66.4 %.

A Study on Deterioration Measurement Sensor in the Automobile Engine Oil (자동차용 엔진오일의 열화도 측정 센서연구)

  • Kim, Won-Tae;Choi, Man-Yong;Park, Hae-Won;Park, Jung-Hak
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.24 no.3 s.192
    • /
    • pp.61-66
    • /
    • 2007
  • This work is aimed to measure the deterioration in oil sensor. For the study, the circuit of a coil-type oil sensor packaged was developed and applied to the automobile engine for monitoring the deterioration of engine oil in driving conditions. From the principle which the deterioration of automobile engine oil can be expressed to the dielectric constant, the capacitance bridge circuit and the integrator circuit were designed. As results, the range of operating temperature of engine oil was experimentally recommended within $55^{\circ}C$ for the stability of a sensor designed. It was also concluded that the characteristics of output voltage converted from the dielectric constant were linearly distributed and predicted the optimized time for the exchange of engine oil.

Analysis of the Phase Angle for High Precision 10 A Calculable Shunt (초 정밀 10A Shunt 개발을 위한 위상각 해석)

  • Wijesinghe, W.M.S.;Park, Young-Tae;Ko, Kyoung-Jin
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.977-978
    • /
    • 2007
  • The phase angle which is mainly depend on time constant $\tau$ of the calculable 10 A and 0.1 ${\Omega}ac/dc$ resistor has been analysed. The low values of resistors are usually inductive and time constant $\tau$ very large compare to high values of resistors. The numerical analysis has been shown that the time constant $\tau$ becomes zero when introduce the compensation capacitance geometrically to the resistive coil with proper dimension. As a result a very low phase angle can be achieved within the realizable dimensions.

  • PDF

Design and Analysis of Vibration Driven Cylindric Electromagnetic Energy Harvester (진동 구동식 원통형 전자기 에너지 하베스터의 설계 및 해석)

  • Chung, Gwiy-Sang;Ryu, Kyeong-Il
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.23 no.11
    • /
    • pp.906-910
    • /
    • 2010
  • This paper describes the design and analysis of vibration driven cylindric electromagnetic energy harvester. The proposed harvester consists with spring, coil and rear earth magnet. The design utilizes an electromagnetic transducer and its operating principle is based on the relative movement of a magnet pole with respect to a coil. In order to optimal design and analysis, ANSYS FEA (Finite Elements Analysis) and Matlab model were used to predict the magnetic filed density with vibration and the generated maximum output power with load resistance. The system was designed for 6 Hz of natural frequency and spring constant was 39.48 N/m between 2 mm and 6 mm of displacement in moving magnet. When moving magnet of system was oscillated, each model was obtained that induced voltage in the coil was generated 2.275 Vpp, 2.334 Vpp and 2.384 Vpp, respectively. Then maximum output powers of system at load resistance ($1303{\Omega}$) were generated $124.2{\sim}132.2\;{\mu}W$ during magnets input displacement of 3 mm and 6 Hz periodic oscillation.

Analysis of Stiffness for Frustum-shaped Coil Spring (원추형 코일스프링의 강성해석)

  • Kim, Jin-Hun;Lee, Soo-Jong;Kim, Jung-Ryul
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.250-255
    • /
    • 2008
  • Springs are widely utilized in machine element. To find out stiffness of frustum-shaped coil spring, the space beam theory using the finite element method is adopted in this paper. In three dimensional space, a space frame element is a straight bar of uniform cross section which is capable of resisting axial forces, bending moments about two principal axes in the plane of its cross section and twisting moment about its centroidal axis. The corresponding displacement degrees of freedom are twelve. To find out load vector of coil spring subjected to distributed compression. principle of virtual work is adapted. And this theory was programming using MATLAB software. To compare FEM using MATLAB software was applied MSC. Nastran software. The geometry model for MSC. Patran was produced by 3-D design modeling software. Finite element model was produced by MSC. Patran. Finite element was applied tetra (CTETRA) having 10 node. The analysis results of the MATLAB and MSC. Nastran are fairly well agreed with those of various experiments. Using MATLAB program proposed in this paper and MSC. Nastran, spring constants and stresses can be predicted by input of few factors.

Development of Low Loss Magnetic Levitation System (저손실 자기부상 시스템 개발)

  • Kim Jong-Moon;Kang Do-Hyun
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.54 no.12
    • /
    • pp.592-600
    • /
    • 2005
  • In this paper, a low loss magnetic levitation(Maglev) system is suggested and tested. The suggested Maglev system includes four hybrid magnets which consist of permanent magnet and coil. In the steady state, the levitated module system can be supported by attraction force generated by permanent magnet. The coil current controls only dynamic loads due to external disturbances. The module systems are designed by using finite element method(FEM) software tools such as MAXWELL and ANSYS. Also, digital control systems are designed to keep the magnet airgap at a constant value. The control systems include a VME(versa module europa)-based CPU(central processing unit) board, AD(analog to digital) board, PWM(pulse width modulation) board, 4-quadrant chopper, and sensors. In order to estimate the vertical velocity of the magnet, we use second order state observer with acceleration and gap signals as input and output signals, respectively. The characteristics of the suggested low loss Maglev system are demonstrated by experimental results showing coil current of 0A in the steady state of 3m airgap and performance specifications are satisfied for reference gap and force disturbance.