• Title/Summary/Keyword: cohesion of soil

Search Result 248, Processing Time 0.028 seconds

Analysis on the Shear Failure of Fiber Mixed Soil (섬유혼합토의 전단파괴 해석)

  • 박영곤
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.42 no.2
    • /
    • pp.86-92
    • /
    • 2000
  • The model using homogenization technique based on energy concept for the prediction of the failure criterion of staple fiber mixed soil was developed to increase the practice and the application of staple fiber as a reinforcement for improving soft ground. Parameters of the model are aspect ratio and volumetric content of fiber, cohesion and internal friction angle of soil, adhesion intercept and interface friction angle of soil and fiber. It is considered that the model developed in this study is applicable to the soil composed of clay, silt and sand mixed by thread types of fiber such as steel bar, steel fiber, natural fiber etc.

  • PDF

Prediction of PTO Power Requirements according to Surface energy during Rotary Tillage using DEM-MBD Coupling Model (이산요소법-다물체동역학 연성해석 모델을 활용한 로타리 경운작업 시 표면 에너지에 따른 PTO 소요동력 예측)

  • Bo Min Bae;Dae Wi Jung;Jang Hyeon An;Se O Choi;Sang Hyeon Lee;Si Won Sung;Yeon Soo Kim;Yong Joo Kim
    • Journal of Drive and Control
    • /
    • v.21 no.2
    • /
    • pp.44-52
    • /
    • 2024
  • In this study, we predicted PTO power requirements based on torque predicted by the discrete element method and the multi-body dynamics coupling method. Six different scenarios were simulated to predict PTO power requirements in different soil conditions. The first scenario was a tillage operation on cohesionless soil, and the field was modeled using the Hertz-Mindlin contact model. In the second through sixth scenarios, tillage operations were performed on viscous soils, and the field was represented by the Hertz-Mindlin + JKR model for cohesion. To check the influence of surface energy, a parameter to reproduce cohesion, on the power requirement, a simple regression analysis was performed. The significance and appropriateness of the regression model were checked and found to be acceptable. The study findings are expected to be used in design optimization studies of agricultural machinery by predicting power requirements using the discrete element method and the multi-body dynamics coupling method and analyzing the effect of soil cohesion on the power requirement.

Usage of coot optimization-based random forests analysis for determining the shallow foundation settlement

  • Yi, Han;Xingliang, Jiang;Ye, Wang;Hui, Wang
    • Geomechanics and Engineering
    • /
    • v.32 no.3
    • /
    • pp.271-291
    • /
    • 2023
  • Settlement estimation in cohesion materials is a crucial topic to tackle because of the complexity of the cohesion soil texture, which could be solved roughly by substituted solutions. The goal of this research was to implement recently developed machine learning features as effective methods to predict settlement (Sm) of shallow foundations over cohesion soil properties. These models include hybridized support vector regression (SVR), random forests (RF), and coot optimization algorithm (COM), and black widow optimization algorithm (BWOA). The results indicate that all created systems accurately simulated the Sm, with an R2 of better than 0.979 and 0.9765 for the train and test data phases, respectively. This indicates extraordinary efficiency and a good correlation between the experimental and simulated Sm. The model's results outperformed those of ANFIS - PSO, and COM - RF findings were much outstanding to those of the literature. By analyzing established designs utilizing different analysis aspects, such as various error criteria, Taylor diagrams, uncertainty analyses, and error distribution, it was feasible to arrive at the final result that the recommended COM - RF was the outperformed approach in the forecasting process of Sm of shallow foundation, while other techniques were also reliable.

A Simple Approach of Estimating the Shear Strength Parameters for Unsaturated Soil-Aggregate Systems (불포화 지반재료의 전단강도정수 추정을 위한 간편법)

  • Park, Seong-Wan;Kim, Yong-Rak
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.3
    • /
    • pp.75-82
    • /
    • 2003
  • This paper presents the results of a study that was performed to evaluate fronds of shear strength parameters in stabilization of unbound soil-aggregate systems based on the theory of unsaturated soil mechanics. Two important shear strength parameters, effective cohesion and effective angle of internal friction were estimated by the proposed approach using the results from suction measurements and unconfined compressive strength test. In addition, the effect of different addition rates of stabilizing agent was compared. Due to the stabilization process, an increase in suction potential on engineering properties of geomaterials was observed by using dielectric constant measurements. In conclusion, the results from this study show that the proposed approach can be simply used for predicting shear strength parameters of the stabilized geomaterials.

Static and seismic active lateral earth pressure coefficients for c-ϕ soils

  • Keshavarz, Amin;Pooresmaeil, Zahra
    • Geomechanics and Engineering
    • /
    • v.10 no.5
    • /
    • pp.657-676
    • /
    • 2016
  • In this paper, the active lateral earth pressure is evaluated using the stress characteristics or slip line method. The lateral earth pressure is expressed as the lateral earth pressure coefficients due to the surcharge, the unit weight and cohesion of the backfill soil. Seismic horizontal and vertical pseudo-static coefficients are used to consider the seismic effects. The equilibrium equations along the characteristics lines are solved by the finite difference method. The slope of the ground surface, the wall angle and the adhesion and friction angle of the soil-wall interface are also considered in the analysis. A computer code is provided for the analysis. The code is capable of solving the characteristics network, determining active lateral earth pressure distribution and calculating active lateral earth pressure coefficients. Closed-form solutions are provided for the lateral earth pressure coefficients due to the surcharge and cohesion. The results of this study have a good agreement with other reported results. The effects of the geometry of the retaining wall, the soil and soil-wall interface parameters are evaluated. Non-dimensional graphs are presented for the active lateral earth pressure coefficients.

A Study on the Slope Analysis of Weathered Limestone Soils during Rainfalls (강우 시 석회암 풍화토 사면의 안정해석에 관한 연구)

  • Kim Jong-Ryeol;Kang Seung-Goo;Kang Hee-Bog;Park Seung-Kyun;Park Chol-Won
    • The Journal of Engineering Geology
    • /
    • v.15 no.1
    • /
    • pp.9-17
    • /
    • 2005
  • A set of soil samples were picked up from a failed slope formed by rainfall in limestone zone in Jangseong-gun, Jeonnam, Korea, to find out its physical and mechanical characteristics for this study, and variation of safety factor depending on slope inclination was defined by analysing slope stability affected by rainfall. Decomposed limestone soil in the research area is composed of quartz, orthoclase, gibbsite, geothite, etc., with specific gravity of 2.73, and this soil is included in SC by unified soil classification system. Calcium ingredient decreased remarkably during weathering at its mother rock. Coefficient of permeability is 2.56×10/sup -4/ cm/ sec, similar to its value of silty clay. Cohesion decreases remarkably from 3.0 t/ ㎡ to 0.72 t/ ㎡, and Φ value of internal friction angle tends to decrease as it turns to be saturated soil from partial saturated soil in the shear test. To analyze slope stability affected by rainfall, it is reasonable to seek seepage depth with reference to rainfall* intensity. In the slope stability analysis, when the seepage depth is the larger, its safety factor is the less, which makes the slope unstable. Comparing with minimum safety factor, 1.5 of cut slope in consideration of the seep-age line, safety factor is found to be satisfactory only when inclination of cut slope of decomposed limestone soil is more than 1:1.2 slope at least considering rainfall. It is also found that decrease of cohesion has great effect on decline of safety factor of slope while partial saturated soil turns to be saturated soil.

Undrained shear strength and microstructural characterization of treated soft soil with recycled materials

  • Al-Bared, Mohammed A.M.;Harahap, Indra S.H.;Marto, Aminaton;Abad, Seyed Vahid Alavi Nezhad Khalil;Ali, Montasir O.A.
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.427-437
    • /
    • 2019
  • Waste materials are being produced in huge quantities globally, and the usual practice is to dump them into legal or illegal landfills. Recycled tiles (RT) are being used in soil stabilisation which is considered as sustainable solution to reduce the amount of waste and solve the geotechnical problems. Although the stabilisation of soil using RT improved the soil properties, it could not achieve the standard values required for construction. Thus, this study uses 20% RT together with low cement content (2%) to stabilise soft soil. Series of consolidated undrained triaxial compression tests were conducted on untreated and RT-cement treated samples. Each test was performed at 7, 14, and 28 days curing period and 50, 100, and 200 kPa confining pressures. The results revealed an improvement in the undrained shear strength parameters (cohesion and internal frication angle) of treated specimens compared to the untreated ones. The cohesion and friction angle of the treated samples were increased with the increase in curing time and confining pressure. The peak deviator stress of treated samples increases with the increment of either the effective confining pressures or the curing period. Microstructural and chemical tests were performed on both untreated and RT-cement treated samples, which included field emission scanning electron microscopic (FESEM), Fourier transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and energy dispersive X-ray spectrometer (EDX). The results indicated the formation of cementation compounds such as calcium aluminium hydrate (C-A-H) within the treated samples. Consequently, the newly formed compounds were responsible for the improvement observed in the results of the triaxial tests. This research promotes the utilisation of RT to reduce the amount of cement used in soil stabilisation for cleaner planet and sustainable environment.

Mechanical properties of expanded polystyrene beads stabilized lightweight soil

  • Li, Mingdong;Wen, Kejun;Li, Lin;Tian, Anguo
    • Geomechanics and Engineering
    • /
    • v.13 no.3
    • /
    • pp.459-474
    • /
    • 2017
  • To investigate the mechanical properties of Expanded Polystyrene (EPS) Beads Stabilized Lightweight Soil (EBSLS), Laboratory studies were conducted. Totally 20 sets of specimens according to the complete test design were prepared and tested with unconfined compressive test and consolidated drained triaxial test. Results showed that dry density of EBSLS ($0.67-1.62g/cm^3$) decreases dramatically with the increase of EPS beads volumetric content, while increase slightly with the increase of cement content. Unconfined compressive strength (10-2580 kPa) increases dramatically in parabolic relationship with the increase of cement content, while decreases with the increase of EPS beads volumetric content in hyperbolic relationship. Cohesion (31.1-257.5 kPa) increases with the increase of cement content because it is mainly caused by the bonding function of hydration products of cement. The more EPS beads volumetric content is, the less dramatically the increase is, which is a result of the cohesion between hydration products of cement and EPS beads is less than that between hydration products of cement and sand particles. Friction angle ($14.92-47.42^{\circ}$) decreases with the increase of EPS beads volumetric content, which is caused by the smoother surfaces of EPS beads than sand grains. The stress strain curves of EBSLS tend to be more softening with the increase of EPS beads content or the decrease of cement content. The shear contraction of EBSLS increases with the increase of $c_e$ or the decrease of $c_c$. The results provided quantitative relationships between physico-mechanical properties of EBSLS and material proportion, and design process for engineering application of EBSLS.

Effect of water distribution on shear strength of compacted loess

  • Kang-ze, Yuan;Wan-kui, Ni;Xiang-fei, Lu;Hai-man, Wang
    • Geomechanics and Engineering
    • /
    • v.31 no.5
    • /
    • pp.519-527
    • /
    • 2022
  • Shear failure in soil is the primary cause of most geotechnical structure failures or instability. Soil water content is a significant factor affecting soil shear strength. In this study, the shear strength of samples with different water contents was tested. The shear strength, cohesion, and internal friction angle decreased with increasing water content. Based on the variation of cohesion and internal friction angle, the water content zone was divided into a high-water content zone and low-water content zone with a threshold water content of 15.05%. Cohesion and internal friction angle have a good linear relationship with water content in both zones. Environmental Scanning Electron Microscopy (ESEM) test presented that the aggregates size of the compacted loess gradually increases with increasing water content. Meanwhile, the clay in the compacted loess forms a matric that envelops around the surface of the aggregates and fills the inter-aggregates pores. A quantitative analysis of bound water and free water under different water contents using a nuclear magnetic resonance (NMR) test was carried out. The threshold water content between bound water and free water was slightly below the plastic limit, which is consistent with the results of shear strength parameters. Combined with the T2 distributions obtained by NMR, one can define a T2 relaxation time of 1.58 ms as the boundary point for bound water distribution without free water. Finally, the effects of bound water and free water on shear strength parameters were analyzed using linear regression analysis.

Shallow Landslide Assessment Considering the Influence of Vegetation Cover

  • Viet, Tran The;Lee, Giha;Kim, Minseok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.4
    • /
    • pp.17-31
    • /
    • 2016
  • Many researchers have evaluated the influence of vegetation cover on slope stability. However, due to the extensive variety of site conditions and vegetation types, different studies have often provided inconsistent results, especially when evaluating in different regions. Therefore, additional studies need to be conducted to identify the positive impacts of vegetation cover for slope stabilization. This study used the Transient Rainfall Infiltration and Grid-based Regional Slope-stability Model (TRIGRS) to predict the occurrence of landslides in a watershed in Jinbu-Myeon, Pyeongchang-gun, Korea. The influence of vegetation cover was assessed by spatially and temporally comparing the predicted landslides corresponding to multiple trials of cohesion values (which include the role of root cohesion) and real observed landslide scars to back-calculate the contribution of vegetation cover to slope stabilization. The lower bound of cohesion was defined based on the fact that there are no unstable cells in the raster stability map at initial conditions, and the modified success rate was used to evaluate the model performance. In the next step, the most reliable value representing the contribution of vegetation cover in the study area was applied for landslide assessment. The analyzed results showed that the role of vegetation cover could be replaced by increasing the soil cohesion by 3.8 kPa. Without considering the influence of vegetation cover, a large area of the studied watershed is unconditionally unstable in the initial condition. However, when tree root cohesion is taken into account, the model produces more realistic results with about 76.7% of observed unstable cells and 78.6% of observed stable cells being well predicted.