Browse > Article
http://dx.doi.org/10.12989/gae.2022.31.5.519

Effect of water distribution on shear strength of compacted loess  

Kang-ze, Yuan (Department of Geological Engineering, College of Geological Engineering and Surveying and Mapping, Chang'An University)
Wan-kui, Ni (Department of Geological Engineering, College of Geological Engineering and Surveying and Mapping, Chang'An University)
Xiang-fei, Lu (Department of Geological Engineering, College of Geological Engineering and Surveying and Mapping, Chang'An University)
Hai-man, Wang (Department of Geological Engineering, College of Geological Engineering and Surveying and Mapping, Chang'An University)
Publication Information
Geomechanics and Engineering / v.31, no.5, 2022 , pp. 519-527 More about this Journal
Abstract
Shear failure in soil is the primary cause of most geotechnical structure failures or instability. Soil water content is a significant factor affecting soil shear strength. In this study, the shear strength of samples with different water contents was tested. The shear strength, cohesion, and internal friction angle decreased with increasing water content. Based on the variation of cohesion and internal friction angle, the water content zone was divided into a high-water content zone and low-water content zone with a threshold water content of 15.05%. Cohesion and internal friction angle have a good linear relationship with water content in both zones. Environmental Scanning Electron Microscopy (ESEM) test presented that the aggregates size of the compacted loess gradually increases with increasing water content. Meanwhile, the clay in the compacted loess forms a matric that envelops around the surface of the aggregates and fills the inter-aggregates pores. A quantitative analysis of bound water and free water under different water contents using a nuclear magnetic resonance (NMR) test was carried out. The threshold water content between bound water and free water was slightly below the plastic limit, which is consistent with the results of shear strength parameters. Combined with the T2 distributions obtained by NMR, one can define a T2 relaxation time of 1.58 ms as the boundary point for bound water distribution without free water. Finally, the effects of bound water and free water on shear strength parameters were analyzed using linear regression analysis.
Keywords
bound water; ESEM; linear regression analysis; loess; shear strength;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Smith, J.K. and Vesilind, P.A. (1995), "Dilatometric measurement of bound water in wastewater sludge", Water Res., 29(12), 2621-2626. https://doi.org/10.1016/0043-1354(95)00144-A.   DOI
2 Strange, J.H., Rahman, M. and Smith, E.G. (1993), "Characterization of porous solids by NMR", Phys. Rev. Lett., 71, 3589-3591. https://doi.org/10.1103/PhysRevLett.71.3589.   DOI
3 Tian, H., Wei, C., Lai, Y. and Chen, P. (2018), "Quantification of water content during freeze-thaw cycles: A nuclear magnetic resonance based method", Vadose Zone J., 17(1), 160124. https://doi.org/10.2136/vzj2016.12.0124.   DOI
4 Wen, B.P. and Yan, Y.J. (2014), "Influence of structure on shear characteristics of the unsaturated loess in Lanzhou, China", Eng. Geol., 168, 46-58. https://doi.org/10.1016/j.enggeo.2013.10.023.   DOI
5 Youssef, A.M. and Maerz, N.H. (2013), "Overview of some geological hazards in the Saudi Arabia", Environ Earth Sci., 70, 3115-3130. https://doi.org/10.1007/s12665-013-2373-4.   DOI
6 Assallay, A.M., Rogers, C.D.F. and Smalley, I.J. (1997), "Formation and collapse of metastable particle packings and open structures in loess deposits", Eng. Geol., 48(1-2), 101-115. https://doi.org/10.1016/S0013-7952(97)81916-3.   DOI
7 ASTM (2006), Annual Book of ASTM Standards. ASTM International, West Conshohocken, Pa.
8 Bakir, N., Abbeche, K. and Panczer, G. (2017), "Experimental study of the effect of the glass fibers on reducing collapse of a collapsible soil", Geomech Eng., 12(1), 71-83. https://doi.org/10.12989/gae.2017.12.1.071.   DOI
9 Bleam, W.F. (1991), "Soil science applications of nuclear magnetic resonance spectroscopy", Adv. Agron., 32. 91-155. https://doi.org/10.1016/S0065-2113(08)60579-9.   DOI
10 Carey, J.M., McSaveney, M.J. Petley, D.N. (2017), "Dynamic liquefaction of shear zones in intact loess during simulated earthquake loading", Landslides., 14, 789-804. https://doi.org/10.1007/s10346-016-0746-y.   DOI
11 Costabel, S. and Yaramanci, U. (2013), "Estimation of water retention parameters from nuclear magnetic resonance relaxation time distributions: Estimation of water retention parameters from NMR", Water Resour. Res., 49(4), 2068-2079. https://doi.org/10.1002/wrcr.20207.   DOI
12 Derbyshire, E., Dijkstra, T.A., Smalley, I.J. and Li, Y. (1994), "Failure mechanisms in loess and the effects of moisture content changes on remoulded strength", Quat. Int., 24, 5-15. https://doi.org/10.1016/1040-6182(94)90032-9.   DOI
13 Dijkstra, T.A., Rogers, C.D.F., Smalley, I.J., Derbyshire, E., Li, Y.J. and Meng, X.M. (1994), "The loess of north-central China: Geotechnical properties and their relation to slope stability", Eng. Geol., 36(3-4), 153-171. https://doi.org/10.1016/0013-7952(94)90001-9.   DOI
14 Ebrahimi, M., Sarikhani, M.R., Safari Sinegani, A.A., Ahmadi, A. and Keesstra, S. (2019), "Estimating the soil respiration under different land uses using artificial neural network and linear regression models", CATENA, 174, 371-382. https://doi.org/10.1016/j.catena.2018.11.035.   DOI
15 Gallegos, D.P. and Smith, D.M. (1988), "A NMR technique for the analysis of pore structure: Determination of continuous pore size distributions", J Colloid Interf. Sci., 122(1), 143-153. https://doi.org/10.1016/0021-9797(88)90297-4.   DOI
16 Gu, T., Wang, J., Wang, C., Bi, Y., Guo, Q. and Liu, Y. (2019), "Experimental study of the shear strength of soil from the Heifangtai platform of the loess plateau of China", J. Soils Sediments., 19, 3463-3475. https://doi.org/10.1007/s11368-019-02303-9.   DOI
17 Guo, Y., Ni, W. and Liu, H. (2021), "Effects of dry density and water content on compressibility and shear strength of loess", Geomech. Eng., 24(5), 419-430. https://doi.org/10.12989/gae.2021.24.5.419.   DOI
18 Houston, S.L., Houston, W.N., Zapata, C.E. and Lawrence, C. (2001), "Geotechnical engineering practice for collapsible soils, in: (Ed., Toll, D.G.), unsaturated soil concepts and their application in geotechnical practice", Spr Nether., 333-355. https://doi.org/10.1007/978-94-015-9775-3_6.   DOI
19 Howard, J.J. and Kenyon, W.E. (1992), "Determination of pore size distribution in sedimentary rocks by proton nuclear magnetic resonance", Mar Pet Geol., 9(2), 139-145. https://doi.org/10.1016/0264-8172(92)90086-T.   DOI
20 Khalili, N., Geiser, F. and Blight, G.E. (2004), "Effective stress in unsaturated soils: Review with mew evidence", Int. J. Geomech., 4(2), 115-126. https://doi.org/10.1061/(ASCE)1532-3641(2004)4:2(115).   DOI
21 Kie (1988), "Fundamental properties of loess from Northwestern China", Eng. Geol., 25(2-4), 103-122. https://doi.org/10.1016/0013-7952(88)90022-1.   DOI
22 Kim, K.S., Kim, M.I., Lee, M.S. and Hwang, E.S. (2020), "Regression equations for estimating landslide-triggering factors using soil characteristics", Appl. Sci., 10, 3560. https://doi.org/10.3390/app10103560.   DOI
23 Kleinberg, R.L. (1994), "Pore size distributions, pore coupling, and transverse relaxation spectra of porous rocks", MAGN Reson. Imaging, 12(2), 271-274. https://doi.org/10.1016/0730-725X(94)91534-2.   DOI
24 Low, P.F. (1979), "Nature and properties of water in montmorillonite-water systems", Soil Sci Soc Am J., 43(4), 651-658. https://doi.org/10.2136/sssaj1979.03615995004300040005x.   DOI
25 Ma, T., Wei, C., Yao, C. and Yi, P. (2020), "Microstructural evolution of expansive clay during drying-wetting cycle", Acta Geotech., 15, 2355-2366. https://doi.org/10.1007/s11440-020-00938-4.   DOI
26 Markgraf, W., Horn, R. and Peth, S. (2006), "An approach to rheometry in soil mechanics-Structural changes in bentonite, clayey and silty soils", Soil Tillage Res., 91(1-2), 1-14. https://doi.org/10.1016/j.still.2006.01.007.   DOI
27 Ripmeester, J.A. and Alavi, S. (2016), "Some current challenges in clathrate hydrate science: Nucleation, decomposition and the memory effect", Curr. Opin Solid St M., 20(6), 344-351. https://doi.org/10.1016/j.cossms.2016.03.005.   DOI
28 Mei, Y, Hu, C.M., Yuan, Y.L., Wang, X.Y. and Zhao, N. (2016), "Experimental study on deformation and strength property of compacted loess", Geomech. Eng., 11(1), 161-175. https://doi.org/10.12989/gae.2016.11.1.161.   DOI
29 Osipov, V.I. (2012), "Nanofilms of adsorbed water in clay: Mechanism of formation and properties", Water Resour., 39, 709-721. https://doi.org/10.1134/S009780781207010X.   DOI
30 Pye, K. (1995) "The nature, origin and accumulation of loess", Quaternary Sci. Rev., 14(7-8), 653-667. https://doi.org/10.1016/0277-3791(95)00047-X.   DOI
31 Rost, K.T. (2001), "Late Holocene loess deposits and dust accumulation in the alpine meadow belt of the Wutai Shan, China", Quat. Int., 76-77, 85-92. https://doi.org/10.1016/S1040-6182(00)00092-6.   DOI
32 Sarkar, S., Roy, A.K. and Raha, P. (2016), "Deterministic approach for susceptibility assessment of shallow debris slide in the Darjeeling Himalayas, India", Catena 142, 36-46. https://doi.org/10.1016/j.catena.2016.02.009.   DOI
33 Smalley, I. and Rogers, C. (1996), "Loess: The yellow earth", Geo. Today., 12, 186-193. https://doi.org/10.1046/j.1365-2451.1996.00015.x.   DOI