• Title/Summary/Keyword: coherent anti-Stokes Raman scattering

Search Result 12, Processing Time 0.021 seconds

Label-Free Molecular Imaging of Living Cells

  • Fujita, Katsumasa;Smith, Nicholas Isaac
    • Molecules and Cells
    • /
    • v.26 no.6
    • /
    • pp.530-535
    • /
    • 2008
  • Optical signals based on Raman scattering, coherent anti-Stokes Raman scattering (CARS), and harmonic generation can be used to image biological molecules in living cells without labeling. Both Raman scattering and CARS signals can be used to detect frequencies of molecular vibrations and to obtain the molecular distributions in samples. Second-harmonic optical signals can also be generated in structured arrays of noncentrosymmetric molecules and can be used to detect structured aggregates of proteins, such as, collagen, myosin and tubulin. Since labeling techniques using chemical and biological reactions may cause undesirable changes in the sample, label-free molecular imaging techniques are essential for observation of living samples.

The Optical Design of Miniaturized Microscope Objective for CARS Imaging Catheter with Fiber Bundle

  • Rim, Cheon-Seog
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.424-430
    • /
    • 2010
  • In coherent anti-Stokes Raman scattering (CARS) microscopy reported until now, conventional microscope objectives are used, so that they are limited for introduction into a living body. Gradient-index (GRIN) rod lenses might be a solution for miniaturized microscope objectives for in-vivo CARS microscopy. However, due to the inherent large amount of chromatic aberration, GRIN rod lenses cannot be utilized for this purpose. CARS imaging catheter, composed of miniaturized microscope objective and fiber bundle, can be introduced into a living body for minimally invasive diagnosis. In order to design the catheter, we have to first investigate design requirements. And then, the optical design is processed with design strategies and intensive computing power to achieve the design requirements. We report the miniaturized objective lens system with diffraction-limited performance and completely corrected chromatic aberrations for an in-vivo CARS imaging catheter.

The Optical Design of Probe-type Microscope Objective for Intravital Laser Scanning CARS Microendoscopy

  • Rim, Cheon-Seog
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.431-437
    • /
    • 2010
  • A stack of gradient-index (GRIN) rod lenses cannot be used for coherent anti-Stokes Raman scattering (CARS) microendoscopy for insertion to internal organs through a surgical keyhole with minimal invasiveness. That's because GRIN lens has large amount of inherent chromatic aberrations in spite of absolutely requiring a common focus for pump and Stokes beam with each frequency of ${\omega}_p$ and ${\omega}_S$. For this endoscopic purpose, we need to develop a long slender probe-type objective, namely probe-type microscope objective (PMO). In this paper, we introduce the structure, the working principle, and the design techniques of PMO which is composed of a probe-type lens module (PLM) and an adaptor lens module (ALM). PLM is first designed for a long slender type and ALM is successively designed by using several design parameters from PLM for eliminating optical discords between scanning unit and PLM. A combined module is optimized again to eliminate some coupling disparities between PLM and ALM for the best PMO. As a result, we can obtain a long slender PMO with perfectly diffraction-limited performance for pump beam of 817 nm and Stokes beam of 1064 nm.

Theoretical Calculation on Radiation Patterns of Epi-signal in CARS Microscopy (간섭성 반스톡스 라만 산란 현미경 후방 신호지 방사패턴에 관한 이론계산 연구)

  • Yoo, Yong-Shim;Cho, Hyuck
    • Korean Journal of Optics and Photonics
    • /
    • v.18 no.4
    • /
    • pp.286-291
    • /
    • 2007
  • We theoretically investigated the far-field radiation pattern of epi-signal from a polystyrene sphere in coherent anti-Stokes Raman scattering (CARS) microscopy with an objective lens of high numerical aperture. We calculated the field distribution of the incident laser beams under the tight-focusing condition and the far-field radiation pattern through coherent addition of radiation from the nonlinear polarizations (Hertzian dipoles) as the origin of CARS signal generation. The epi-radiation patterns for polystyrene spheres of different diameters are calculated, and the pattern of a sphere is also compared with that of a shell fer a diameter of 1100 nm. We finally show how the radiation pattern of the polystyrene sphere changes as the center of the sphere shifts from the focus of the beam.

Nonresonant-Pump Four Wave Mixing : New Scheme of Phase Matching for Third Order Nonlinear Laser Spectroscopy (비공명펌프 사광자혼합 : 3차 비선형 레이저 분광법을 위한 새로운 위상정합법)

  • 이은성;최대식;이재용;한재원
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2002.07a
    • /
    • pp.222-223
    • /
    • 2002
  • 3차 비선형 광학현상을 이용한 레이저 분광학은 코헤런트 반스톡스 라만산란(Coherent Anti-Stokes Raman Scattering, CARS)이나 축퇴 사광자혼합(Degenerate Four-Wave Mixing, DFWM)이 기계공학의 연소진단이나 화학분야에 응용된 이래 활발히 연구되어져왔다.[1] 비선형 광학현상의 특성상, 발생한 신호는 입사 레이저광들과의 위상정합조건이 만족되는 특정한 방향으로만 진행하고 레이저광처럼 가간섭성을 갖는다. (중략)

  • PDF

Comparison of CARS CO and Temperature Measurements with Numerical Calculation for Methane/Air Premixed Flames (메탄/공기 예혼합화염에서 CARS를 이용한 CO 농도 및 온도측정과 수치해석 결과의 비교)

  • 강경태;정석호;박승남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.5
    • /
    • pp.1333-1339
    • /
    • 1995
  • Recently developed technique of measuring minor species concentration by using the modulation dip in broadband CARS has been applied to the flame structure study of methane/air premixed flames in a counterflow. This method used the modulation dip from the cold band CO Q-branch resonant signal superimposed on the nonresonant background. The measured CO concentration profile in a symmetric and unsymmetric methane/air premixed flames together with the velocity and temperature by using LDV and CARS have been compared with the numerical results adopting detailed chemistry modeling. The results show that there is a satisfactory agreement between the experimental data and numerical results for velocities, temperatures and CO concentrations. And the modulation dip technique of measuring minor species, such as CO is a viable tool for a quantitative measurement in a flame.

Label-free NanoBio Imaging for New Biology and Medical Science

  • Moon, Dae Won
    • Applied Science and Convergence Technology
    • /
    • v.24 no.6
    • /
    • pp.203-214
    • /
    • 2015
  • We have been developing a new label-free nanobio imaging platform using non-linear optics such as Coherent Anti-Stokes Raman Spectroscopy (CARS) and ion beam techniques based on sputtering and scattering such as Secondary Ion Mass Spectrometry (SIMS) and Medium Energy Ion Scattering Spectroscopy (MEIS), which have been widely used for atomic and molecular level analysis of semiconductors and nanomaterials. To apply techniques developed for semiconductors and nanomaterials for biomedical applications, the convergence of nano-analysis and biology were tried. Our activities on label-free nanobio imaging during the last decade are summarized in this review about non-linear optical 3D imaging, ellipsometric interface imaging, SIMS imaging, and TOF-MEIS nano analysis for cardiovascular tissues, collagen thin films, peptides on microarray, nanoparticles, and cell adhesion studies and finally the present snapshot of nanobio imaging and the future prospect are described.

CARS Spectra of HCI, N₂, and C₂H₂ in the Gas Phase

  • 백선종;김중희;박주연;이성열;김홍래
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.9
    • /
    • pp.810-813
    • /
    • 1995
  • Coherent anti-Stokes Raman scattering (CARS) spectra of HCl, N2, and the ν1 fundamental of C2H2 have been measured in the gas phase. The measured spectra show rotational structures which originate from the Q-branch transitions. The spectra have successfully been simulated with proper selection rules, line positions, and relative intensities from room temperature Boltzmann population distributions. The vibration-rotation interaction constant α of HCl in the ground electronic state has been measured from the rotationally resolved CARS spectra which is α=0.3076 cm-1. Possibilities of optical pumping and of measuring state specific energy distributions of molecules are discussed.

Measurement of OH radical spectrum in counterflow burner using degenerate four wave mixing (DFWM(degenerate four wave mixing)을 이용한 대향류버너 화염내의 OH 라디칼 스펙트럼 측정)

  • 이은성;한재원
    • Korean Journal of Optics and Photonics
    • /
    • v.7 no.2
    • /
    • pp.142-149
    • /
    • 1996
  • In non-saturation region, we measured the degenerate four wave mixing spectra of $X^2\;{\Pi}(v=0){\to}A^2{\Sigma}^+(v'=0)$ transition for OH in counterflow burner, which exists transiently in combustion reaction. We used forward box type geometry for phase matching. Calculating the population of each rotational level from the line intensities of R$_1$band and comparing it with Boltzmann distributions, we could obtain the temperatures of the flame at several points. Corrected for the absorption of incident laser fields, the final temperatures coincided with those measured by coherent anti-Stokes Raman Scattering within error $\pm$60 K near 2000 K. We also measured the concentration distribution of OH radical and it was compared to that measured by laser induced fluorescence.

  • PDF