Browse > Article
http://dx.doi.org/10.3807/JOSK.2010.14.4.424

The Optical Design of Miniaturized Microscope Objective for CARS Imaging Catheter with Fiber Bundle  

Rim, Cheon-Seog (Department of Physics, Hannam University)
Publication Information
Journal of the Optical Society of Korea / v.14, no.4, 2010 , pp. 424-430 More about this Journal
Abstract
In coherent anti-Stokes Raman scattering (CARS) microscopy reported until now, conventional microscope objectives are used, so that they are limited for introduction into a living body. Gradient-index (GRIN) rod lenses might be a solution for miniaturized microscope objectives for in-vivo CARS microscopy. However, due to the inherent large amount of chromatic aberration, GRIN rod lenses cannot be utilized for this purpose. CARS imaging catheter, composed of miniaturized microscope objective and fiber bundle, can be introduced into a living body for minimally invasive diagnosis. In order to design the catheter, we have to first investigate design requirements. And then, the optical design is processed with design strategies and intensive computing power to achieve the design requirements. We report the miniaturized objective lens system with diffraction-limited performance and completely corrected chromatic aberrations for an in-vivo CARS imaging catheter.
Keywords
Miniature microscope objective; Miniature objective lens; CARS microscopy; Coherent anti-Stokes Raman scattering;
Citations & Related Records

Times Cited By Web Of Science : 2  (Related Records In Web of Science)
Times Cited By SCOPUS : 4
연도 인용수 순위
1 H. Wang, T. B. Huff, Y. Fu, K. Y. Jia, and J. X. Cheng, “Increasing the imaging depth of coherent anti-Stokes Raman scattering microscopy with a miniature microscope objective,” Opt. Lett. 32, 2212-2214 (2007).   DOI   ScienceOn
2 R. L. Harzic, I. Riemann, M. Weinigel, K. König, and B. Messerschmidt, “Rigid and high-numerical-aperture two-photon fluorescence endoscope,” Appl. Opt. 48, 3396-3400 (2009).   DOI
3 A. Volkmer, J. X. Cheng, and X. S. Xie, “Vibrational imaging with high sensitivity via epidetected coherent anti-Stokes Raman scattering microscopy,” Phys. Rev. Lett. 87, 023901-1-023901-4 (2001).   DOI   ScienceOn
4 J. X. Cheng, A. Volkmer, L. D. Book, and X. S. Xie, “Epi-detected coherent anti-Stokes Raman scattering (E-CARS) microscope with high spectral resolution and high sensitivity,” Journal of Physical Chemistry B 105, 1277-1280 (2001).   DOI   ScienceOn
5 W. J. Smith, Modern Optical Engineering (MacGraw-Hill, NY, USA, 2001), Chapter 6, 10.
6 K. Carlson, M. Chidley, K. B. Sung, M. Descour, A. Gillenwater, M. Follen, and R. Richards-Kortum, “In vivo fiber-optic confocal reflectance microscope with an injectionmolded plastic miniature objective lens,” Appl. Opt. 44, 1792-1797 (2005).   DOI
7 Optical Research Associates, Inc., “CODE V version 10.0,” http://www.opticalres.com.
8 C. Liang, K. B. Sung, R. Richards-Kortum, and M. R. Descour, “Design of a high-numerical-aperture miniature microscope objective for an endoscopic fiber confocal reflectance microscope,” Appl. Opt. 41, 4603-4610 (2002).   DOI
9 M. Born and E. Wolf, Principles of Optics (Pergamon Press, Oxford, UK, 1989), Chapter 9.
10 Y. Fu, H. Wang, R. Shi, and J. X. Cheng, “Second harmonic and sum frequency generation imaging of fibrous astroglial filaments in ex vivo spinal tissues,” Biophysical Journal 92, 3251-3259 (2007).   DOI   ScienceOn
11 J. X. Cheng, Y. K. Jia, G. Zheng, and X. S. Xie, “Laserscanning coherent anti-Stokes Raman scattering microscopy and applications to cell biology,” Biophysical Journal 83, 502-509 (2002).   DOI   ScienceOn
12 C. L. Evans, E. O. Potma, M. Puoris'haag, D. Cote, C. P. Lin, and X. S. Xie, “Chemical imaging of tissue in vivo with video-rate coherent anti-Strokes Raman scattering microscopy,” Proceedings of the National Academy of Sciences of the United States of America 102, 16807-16812 (2005).   DOI   ScienceOn
13 Y. S. Yoo, D. H. Lee, and H. Cho, “Differential two-signal picosecond-pulse coherent anti-Stokes Raman scattering imaging microscopy by using a dual-mode optical parametric oscillator,” Opt. Lett. 32, 3254-3256 (2007).   DOI   ScienceOn
14 J. X. Cheng, “Coherent anti-Stokes Raman scattering microscopy,” Applied Spectroscopy 61, 197A-208A (2007).   DOI   ScienceOn
15 W. Gobel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, “Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective,” Opt. Lett. 29, 2521-2523 (2004).   DOI   ScienceOn
16 G. Krauss, T. Hanke, A. Sell, D. Trautlein, A. Leitenstorfer, R. Selm, M. Winterhaider, and A. Zumbusch, “Compact coherent anti-Stokes Raman scattering microscope based on a picosecond two-color Er:fiber laser system,” Opt. Lett. 34, 2847-2849 (2009).   DOI   ScienceOn
17 J. P. R. Day, G. Rago, K. F. Domke, K. P. Velikov, and M. Bonn, “Label-free imaging of lipophilic bioactive molecules during lipid digestion by multiplex coherent anti-stokes raman scattering microspectroscopy,” Journal of the American Chemical Society 132, 8433-8439 (2010).   DOI   ScienceOn
18 B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, and M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nature Methods 2, 941-950 (2005).   DOI   ScienceOn
19 J. C. Jung and M. J. Schnitzer, “Multiphoton endoscopy,” Opt. Lett. 28, 902-904 (2003).   DOI   ScienceOn
20 M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, “In vivo multiphoton microscopy of deep brain tissue,” Journal of Neurophysiology 91, 1908-1912 (2004).   DOI   ScienceOn
21 J. C. Jung, A. D. Mehta, E. Aksay, R. Stepnoski, and M. J. Schnitzer, “In vivo mammalian brain imaging using oneand two-photon fluorescence microendoscopy,” Journal of Neurophysiology 92, 3121-3133 (2004).   DOI   ScienceOn
22 P. Kim, M. Puoris’haag, D. Cote, C. P. Lin, and S. H. Yun, “In vivo confocal and multiphoton microendoscopy,” Journal of Biomedical Optics 13, 010501 (2008).   DOI   ScienceOn
23 Y. Sartenaer, L. Dreesen, C. Humbert, C. Volcke, G. Tourillon, P. Louette, P. A. Thiry, and A. Peremans, “Adsorption properties of decyl thiocyanate and decanethiol on platinum substrates studied by sum-frequency generation spectroscopy,” Surface Science 601, 1259-1264 (2007).   DOI   ScienceOn
24 S. J. Wallace, J. L. Morrison, K. J. Botting, and T. W. Kee, “Second-harmonic generation and two-photon-excited autofluorescence microscopy of cardiomyocytes: quantification of cell volume and myosin filaments,” Journal of Biomedical Optics 13, 064018 (2008).   DOI   ScienceOn
25 H. Bao, A. Boussioutas, R. Jeremy, S. Russell, and M. Gu, “Second harmonic generation imaging via nonlinear endomicroscopy,” Opt. Express 18, 1255-1260 (2010).   DOI