• Title/Summary/Keyword: cognitive capacity

Search Result 239, Processing Time 0.026 seconds

Multiple-Phase Energy Detection and Effective Capacity Based Resource Allocation Against Primary User Emulation Attacks in Cognitive Radio Networks

  • Liu, Zongyi;Zhang, Guomei;Meng, Wei;Ma, Xiaohui;Li, Guobing
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.3
    • /
    • pp.1313-1336
    • /
    • 2020
  • Cognitive radio (CR) is regarded as an effective approach to avoid the inefficient use of spectrum. However, CRNs have more special security problems compared with the traditional wireless communication systems due to its open and dynamic characteristics. Primary user emulation attack (PUEA) is a common method which can hinder secondary users (SUs) from accessing the spectrum by transmitting signals who has the similar characteristics of the primary users' (PUs) signals, and then the SUs' quality of service (QoS) cannot be guaranteed. To handle this issue, we first design a multiple-phase energy detection scheme based on the cooperation of multiple SUs to detect the PUEA more precisely. Second, a joint SUs scheduling and power allocation scheme is proposed to maximize the weighted effective capacity of multiple SUs with a constraint of the average interference to the PU. The simulation results show that the proposed method can effectively improve the effective capacity of the secondary users compared with the traditional overlay scheme which cannot be aware of the existence of PUEA. Also the good delay QoS guarantee for the secondary users is provided.

Capacity Analysis of Centralized Cognitive Radio Networks for Best-effort Traffics

  • Lin, Mingming;Hong, Xuemin;Xiong, Jin;Xue, Ke;Shi, Jianghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.9
    • /
    • pp.2154-2172
    • /
    • 2013
  • A centralized cognitive radio (CR) network is proposed and its system capacity is studied. The CR network is designed with power control and multi-user scheduling schemes to support best-effort traffics under peak interference power constraints. We provide an analytical framework to quantify its system capacity, taking into account various key factors such as interference constraints, density of primary users, cell radius, the number of CR users, and propagations effects. Furthermore, closed-form formulas are derived for its capacities when only path loss is considered in the channel model. Semi-analytical expressions for the capacities are also given when more realistic channel models that include path loss, shadowing, and small-scale fading are used. The accuracy of the proposed analytical framework is validated by Monte Carlo simulations. Illustrated with a practical example, the provided analytical framework is shown to be useful for the strategic planning of centralized CR networks.

QoS-Guaranteed Capacity of Centralized Cognitive Radio Networks with Interference Averaging Techniques

  • Wang, Jing;Lin, Mingming;Hong, Xuemin;Shi, Jianghong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.8 no.1
    • /
    • pp.18-34
    • /
    • 2014
  • It is widely believed that cognitive radio (CR) networks have an opportunistic nature and therefore can only support best-effort traffics without quality-of-service (QoS) guarantees. In this paper, we propose a centralized CR network that adopts interference averaging techniques to support QoS guaranteed traffics under interference outage constraints. In such a CR network, a CR user adaptively adjusts its transmit power to compensate for the channel loss, thereby keeping the receive signal power at the CR base station (BS) at a constant level. The closed-form system capacity of such a CR network is analyzed and derived for a single cell with one CR BS and multiple CR users, taking into account various key factors such as interference outage constraints, channel fading, cell radius, and locations of primary users. The accuracy of the theoretical results is validated by Monte Carlo simulations. Numerical and simulation results show promising capacity potential for deploying QoS-guaranteed CR networks in frequency bands with fixed primary receivers. Our work can provide theoretical guidelines for the strategic planning of centralized CR networks.

Capacity of Spectrum Sharing Cognitive Radio with MRC Diversity under Delay Quality-of-Service Constraints in Nakagami Fading Environments

  • Zhang, Ping;Xu, Ding;Feng, Zhiyong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.4
    • /
    • pp.632-650
    • /
    • 2013
  • The paper considers a spectrum sharing cognitive radio (CR) network coexisting with a primary network under the average interference power constraint. In particular, the secondary user (SU) is assumed to carry delay-sensitive services and thus shall satisfy a given delay quality-of-service (QoS) constraint. The secondary receiver is also assumed to be equipped with multiple antennas to perform maximal ratio combining (MRC) to enhance SU performance. We investigate the effective capacity of the SU with MRC diversity under aforementioned constraints in Nakagami fading environments. Particularly, we derive the optimal power allocation to achieve the maximum effective capacity of the SU, and further derive the effective capacity in closed-form. In addition, we further obtain the closed-form expressions for the effective capacities under three widely used power and rate adaptive transmission schemes, namely, optimal simultaneous power and rate adaptation (opra), truncated channel inversion with fixed rate (tifr) and channel inversion with fixed rate without truncation (cifr). Numerical results supported by simulations are presented to consolidate our studies. The impacts on the effective capacity of various system parameters such as the number of antennas, the average interference power constraint and the delay QoS constraint are investigated in detail. It is shown that MRC diversity can significantly improve the effective capacity of the SU especially for cifr transmission scheme.

The Relationship between Collegiate Athletes' Communication and Problem-Solving Capacity: The Mediating Effect of Cognitive Emotion Regulation Strategy (대학 운동선수들의 의사소통과 문제해결능력의 관계: 인지적 정서조절전략의 매개효과)

  • Choi, Youngjun
    • 한국체육학회지인문사회과학편
    • /
    • v.58 no.3
    • /
    • pp.67-78
    • /
    • 2019
  • The purpose of this study was to examine the mediating effects of adaptive-maladaptive cognitive emotion regulation strategies in relationship between communication competence and problem-solving capacity. Subjects were 189 male collegiate athletes. The results were as follows: Their communication competence had a positive influence on their problem-solving capacity, and their adaptive emotion regulation strategies had a partial mediating effect on the relationship between communication competence and problem-solving capacity. But the maladaptive emotion regulation strategy did not have a statistically significant relationship with communication competence or problem-solving capacity. This result suggests that the communication competence and customized adaptive emotion regulation strategies are necessary to improve the problem-solving capacity of collegiate athletes.

On the Capacities of Spectrum-Sharing Systems with Transmit Diversity

  • Asaduzzaman, Asaduzzaman;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.10 no.3
    • /
    • pp.99-103
    • /
    • 2010
  • Motivated by recent works on spectrum-sharing systems, this paper investigates the effects of transmit diversity on the peak interference power limited cognitive radio(CR) networks. In particular, we derive the ergodic and outage capacities of a spectrum-sharing system with multiple transmit-antennas. To derive the capacities, peak interference power constraint is imposed to protect the primary receiver. In a CR transmitter and receiver pair with multiple antennas at the transmitter side, the allowable transmit power is distributed over the transmit-antennas to achieve transmit diversity at the receiver. We investigate the effect of this power distribution when a peak interference power constraint is imposed to protect the primary receiver. We show that the transmit diversity does not improve the ergodic capacity compared to the single-antenna system. On the other hand, the transmit diversity significantly improves the outage capacity. For example, two transmit-antennas improve the outage capacity 10 times compared to the single-antenna with a 0 dB interference constraint.

A Cognitive Radio based Multi-hop Relay Cellular Network

  • Hassan, Md. Imrul;Song, Ju-Bin;Kim, Young-Il
    • Proceedings of the IEEK Conference
    • /
    • 2007.07a
    • /
    • pp.97-98
    • /
    • 2007
  • In this paper, we investigate the throughput capacity of a multi-hop relay network with cognitive radio (CR) enabled relay stations (RS). We suggested a TDMA/FDMA based frame structure where RSs dynamically select unused channels to communicate with the base station (BS) using CR techniques to analyze the throughput capacity. We developed the throughput capacity model for the proposed system based on utilization factor. The analytical results based on those equations show significant improvement in throughput capacity for CR enabled multi-hop relay system.

  • PDF

Interference Temperature based Frequency Sharing Scheme for Multiple Cognitive Radio Users (간섭 온도 기만의 다중 Cognitive Radio 사용자를 위한 주파수 공유 방안)

  • Kim, Seung-Wang;Kim, Hye-Ryeong;Choe, Sang-Ho
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.46 no.12
    • /
    • pp.72-81
    • /
    • 2009
  • In this paper, we investigate a spectrum sharing scheme based on the interference temperature (IT), that is a recently introduced receiver-centric metric by FCC. We extend the existing frequency sharing procedure for single CR to the one for multiple CRs (or secondary users, SUs). In the proposed interference model, we consider the practical operating characteristics of primary users (PUs), stochastically activated (ON)/deactivated (OFF) at the time axis, and analyze quantitatively the CR user capacity based on the model. We define the instantaneous capacity for idle time-slot channel allocation and the mean capacity averaging this instantaneous capacity and use them for a proper frequency sharing. Apart from existing schemes, the proposed frequency sharing scheme changes the frequency parameters adaptively depending on the channel characteristics and does not need any sensing information from PUs. Through computer simulation, we verify the proposed model.

Experimental Study on the Cannabis Fructus on Exercise Capacity and Cognitive Function in Vascular Dementia Rat Model (마자인(麻子仁)이 치매병태모델의 운동과 인지기능에 미치는 실험적 연구)

  • Bae, Kil-Joon;Song, Min-Yeong;Choi, Jin-Bong;Kim, Seon-Jong
    • Journal of Korean Medicine Rehabilitation
    • /
    • v.25 no.1
    • /
    • pp.1-15
    • /
    • 2015
  • Objectives The aim of this study was to investigate the effects of Cannabis Fructus on exercise capacity and cognitive function in chronic hypoperfusion induced vascular dementia rat model. Methods Vascular dementia rat models were induced by chronic cerebral hypoperfusion through bilateral common carotid arteries occlusion (BCCAO). All rats were randomly divided into 4 groups: normal group; control group; CF I group (feeding Cannabis Fructus 100 mg/kg); CF II group (feeding Cannabis Fructus 300 mg/kg). In order to study the effects of oral administration of Cannabis Fructus on vascular dementia rat models, corner turn test, hole board test, radial arm maze test, passive avoidance test were taken and Acetylcholine (ACh) activity, Acetylcholinesterase (AChE) activity, serum of Vascular endothelial growth factor (VEGF) protein level were measured. Also histological findings of the liver, kidney, brain and the change of Tau immunoreactive neurons in hippocampus were observed. Results CF I and CF II showed significant improvement in corner turn test, hole board test, radial arm maze test, passive avoidance test, Acetylcholine (ACh) activity, Acetylcholinesterase (AChE) activity, the serum of Vascular endothelial growth factor (VEGF) protein level and the change of Tau immunoreactive neurons in hippocampus. CF I showed more significant effect than CF II in these tests. However in histological observations of the liver and kidney both CF I and CF II showed glomerular injury and hepatotoxicity. Conclusions These results suggest that Cannabis Fructus was helpful in improving exercise capacity and cognitive function on Chronic hypoperfusion induced Vascular Dementia rats. However Cannabis Fructus affects the liver and kidney, therefore suggest that this is an area for further study.

Joint Subcarriers and Power Allocation with Imperfect Spectrum Sensing for Cognitive D2D Wireless Multicast

  • Chen, Yueyun;Xu, Xiangyun;Lei, Qun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.7 no.7
    • /
    • pp.1533-1546
    • /
    • 2013
  • Wireless multicast is considered as an effective transmission mode for the future mobile social contact services supported by Long Time Evolution (LTE). Though wireless multicast has an excellent resource efficiency, its performance suffers deterioration from the channel condition and wireless resource availability. Cognitive Radio (CR) and Device to Device (D2D) are two solutions to provide potential resource. However, resource allocation for cognitive wireless multicast based on D2D is still a great challenge for LTE social networks. In this paper, a joint sub-carriers and power allocation model based on D2D for general cognitive radio multicast (CR-D2D-MC) is proposed for Orthogonal Frequency-Division Multiplexing (OFDM) LTE systems. By opportunistically accessing the licensed spectrum, the maximized capacity for multiple cognitive multicast groups is achieved with the condition of the general scenario of imperfect spectrum sensing, the constrains of interference to primary users (PUs) and an upper-bound power of secondary users (SUs) acting as multicast source nodes. Furthermore, the fairness for multicast groups or unicast terminals is guaranteed by setting a lower-bound number of the subcarriers allocated to cognitive multicast groups. Lagrange duality algorithm is adopted to obtain the optimal solution to the proposed CR-D2D-MC model. The simulation results show that the proposed algorithm improves the performance of cognitive multicast groups and achieves a good balance between capacity and fairness.