• Title/Summary/Keyword: cogeneration plant

Search Result 67, Processing Time 0.024 seconds

Thermoeconomic Analysis of Power Plants with Integrated Exergy Stream (통합적 엑서지에 의한 발전 플랜트의 열경제학적 해석)

  • Kim, D.;Lee, H.;Kwak, H.
    • Proceedings of the KSME Conference
    • /
    • 2000.04b
    • /
    • pp.871-878
    • /
    • 2000
  • Exergetic and thermoeconomic analysis were performed for a 500-MW combined cycle plant and a 137-MW steam power plant without decomposition of exergy stream of matter into thermal and mechanical exergies. The calculated costs of electricity are almost same within 0.5% as those obtained by the thermoeconomic method with decomposition of exergy into thermal and mechanical exergies of the combined cycle plant. However for the gas-turbine cogeneration plant having different kinds of products. the difference in the unit costs of products, obtained from the two methodologies is about 2%. Such outcome indicates that the level at which the cost balances are formulated does not affect the result of thermoeconomic analysis, that is somewhat contradictory to that concluded previously.

  • PDF

Waste Tire Pyrolysis Commercialization Plant for 120t/d Treatment (120톤/일 처리 폐타이어 열분해 상업화 설비 개발)

  • Kim, Seong-Yeon;Kim, Ki-Kyeong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.138-141
    • /
    • 2008
  • The 120t/d pyrolysis commercial plant for waste tire recycling have been constructed in Malaysia and is going to be operated. The plant have the tube reactor with chain conveyer attached disk developed in demonstration research stage. The reactor temperature for commercial plant is about 500deg.C and reactor inside pressure is -100$\sim$-120mmHg. Non-condensable gas is used as fuel for pyrolysis heat source, and the exhausted heat is recovered for cogeneration to produce steam and electric power of 600kw.

  • PDF

Exergetic and Thermoeconomic Analysis of Steam Power Plant (스팀 동력 플랜트의 엑서지 및 열경제학적 해석)

  • Kim, Duck-Jin;Jung, Jung-Yeul;Kwak, Ho-Young
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.27 no.1
    • /
    • pp.76-83
    • /
    • 2003
  • Exergetic and thermoeconomic analyses were performed fer a 137-MW steam power plant. In these analyses, mass and energy conservation laws were applied to each component of the system. Quantitative balance of the exergy and exergetic cost for each component, and for the whole system was carefully considered. The exergo-economic model, which represented the productive structure of the system was used to visualize the cost formation process and the productive interaction between components. The computer program developed in this study can determine production costs of power plants, such as gas-and steam-turbines plants and gas-turbine cogeneration plants. The program can also be used to study plant characteristics, namely, thermodynamic performance and sensitivity to changes in process and/or component design variables.

Investigating the Cause of Ash Deposition and Equipment Failure in Wood Chip-Fueled Cogeneration Plant (우드칩을 연료로 하는 열병합발전소의 회분 퇴적 및 설비 고장 원인 분석)

  • Min Ji Song;Woo Cheol Kim;Heesan Kim;Jung-Gu Kim;Soo Yeol Lee
    • Corrosion Science and Technology
    • /
    • v.22 no.3
    • /
    • pp.187-192
    • /
    • 2023
  • The use of biomass is increasing as a response to the convention on climate change. In Korea, a method applied to replace fossil fuels is using wood chips in a cogeneration plant. To remove air pollutants generated by burning wood chips, a selective denitrification facility (Selective catalytic reduction, SCR) is installed downstream. However, problems such as ash deposition and descaling of the equipment surface have been reported. The cause is thought to be unreacted ammonia slip caused by ammonia ions injected into the reducing agent and metal corrosion caused by an acidic environment. Element analysis confirmed that ash contained alkali metals and sulfur that could cause catalyst poisoning, leading to an increase in the size of ash particle and deposition. Measurement of the size of ash deposited inside the facility confirmed that the size of ash deposited on the catalyst was approximately three times larger than the size of generally formed ash. Therefore, it was concluded that a reduction in pore area of the catalyst by ash deposition on the surface of the catalyst could lead to a problem of increasing differential pressure in a denitrification facility.

Performance Prediction of a Combined Heat and Power Plant Considering the Effect of Various Gas Fuels

  • Joo, Yong-jin;Kim, Mi-yeong;Park, Se-ik;Seo, Dong-kyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.3 no.2
    • /
    • pp.133-140
    • /
    • 2017
  • The performance prediction software developed in this paper is a process analysis tool that enables one to foretell the behavior of processes when certain conditions of operation are altered. The immediate objective of this research is to predict the process characteristics of combined heat and power plant under varying operating conditions. A cogeneration virtual power plant that mimics the mechanical performance of the actual plant was constructed and the performance of the power plant was predicted in the following varying atmospheric conditions: temperature, pressure and humidity. This resulted in a positive outcome where the performance of the power plant under changing conditions were correctly predicted as well as the calorific value of low calorific gas fuel such as shale gas and PNG. The performance prediction tool can detect the operation characteristics of the power plant through the performance index analysis and thus propose the operation method taking into consideration the changes in environmental conditions.

Nonlinear Process Model Based Control of Drum-type Cogeneration Power Plant (비선형 PMBC에 의한 드럼형 열병합발전소 제어)

  • 조영춘;남해곤;이광식;윤성훈
    • Journal of Energy Engineering
    • /
    • v.4 no.3
    • /
    • pp.364-371
    • /
    • 1995
  • 100MW급 유류 연소 드럼형 열병합발전소의 주증기온도와 드럼수위 제어를 위한 비선형 PMBC를 개발하고 그 성능을 PID 알고리즘과 비교하였다. "first principle" approach를 사용하여 개발된 프로세스 모델은 정상상태를 과도상태에서 그 정확도를 현장의 데이터와 비교 검증한 것으로 제어기 성능 평가와 설계에 적합한 정교한 것이다. PMBC와 PID 제어의 성능을 부하증가와 연료의 열량변화 등의 외란에 비교한 결과, PMBC가 PID에 비하여 속응성, 절대오차 적분차, 제어노력 등에서 월등하게 우수한 것을 확인하였다. 것을 확인하였다.

  • PDF

Vessel Tank로 유입되는 폐열회수 처리에 관한 연구

  • Gu, Jae-Ryang
    • 열병합발전
    • /
    • s.66
    • /
    • pp.4-7
    • /
    • 2008
  • When a Combined cycle power plant was started, Steam turbine wasted pure water too much during prewarming of turbine. Wasted pure water gathered in vessel tank and evaporated immediately, then emitted atmosphere. We investigate method to recover the heat in vessel tank. We installed a heat exchanger in vessel tank. In this study, the designing and manufacturing procedures of the heat exchanger was presented. Also, the performance results was showed briefly.

  • PDF

A study on the calculation of carbon credit according to the supply temperature of cogeneration (열병합발전 공급온도에 따른 탄소 배출권 산정 연구)

  • Choi, SangMi;Kim, Minsung;Kim, Soyeon;Lim, JiHun;Jeong, SangHun
    • Plant Journal
    • /
    • v.18 no.2
    • /
    • pp.46-51
    • /
    • 2022
  • As GHG reduction becomes a major global issue, the importance and interest of ETS is increasing. Korea experienced positive effects of the system since the introduction of ETS in 2015, but also faced various problems. The focus of this study is on the issue of applying the ETS system to the group energy of industrial complexes. The group energy of industrial complexes is a unique industrial form of Korea that cannot be found in the world. Therefore, if the system is implemented in the same way as the preceding countries, it will inevitably cause problems. In particular, the group energy of industrial complexes has the characteristic that the conditions and amount of heat supplied are dtermined according to the demands of customers and the amount of power generation is determined accordingly. We investigated how differenct temperatures of heat produced in cogeneration affect carbon credit calculations.

  • PDF

Radioactive iodine analysis in environmental samples around nuclear facilities and sewage treatment plants

  • Lee, UkJae;Kim, Min Ji;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1355-1363
    • /
    • 2018
  • Many radionuclides exist in normal environment and artificial radionuclides also can be detected. The radionuclides ($^{131}I$) are widely used for labeling compounds and radiation therapy. In Korea, the radionuclide ($^{131}I$) is produced at the Radioisotope Production Facility (RIPF) at the Korea Atomic Energy Research Institute in Daejeon. The residents around the RIPF assume that $^{131}I$ detected in environmental samples is produced from RIPF. To ensure the safety of the residents, the radioactive concentration of $^{131}I$ near the RIPF was investigated by monitoring environmental samples along the Gap River. The selected geographical places are near the nuclear installation, another possible location for $^{131}I$ detection, and downstream of the Gap River. The first selected places are the "front gate of KAERI", and the "Donghwa bridge". The second selected place is the sewage treatment plant. Therefore, the Wonchon bridge is selected for the upstream of the plant and the sewage treatment plant is selected for the downstream of the plant. The last selected places are the downstream where the two paths converged, which is Yongshin bridge (in front of the cogeneration plant). In these places, environmental samples, including sediment, fish, surface water, and aquatic plants, were collected. In this study, the radioactive iodine ($^{131}I$) detection along the Gap River will be investigated.

A Study on Combustion Characteristics of Wood Biomass for Cogeneration Plant (열병합 발전소용 목질계 바이오매스의 연소 특성에 관한 연구)

  • Ryu, Jeong-Seok;Kim, Ki-Seok;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.3
    • /
    • pp.296-300
    • /
    • 2011
  • In this work, various wood biomasses were used to determine the combustion characteristics for the fuel of cogeneration plant. Combustion characteristics of four types, i.e., (i) forest products, (ii) recycled wood, (iii) empty fruit bunch, and (iv) palm kernel shell, were examined via thermal gravimetric analyzer (TGA) in air atmosphere and coal was used as a comparison group. From the TGA results, the combustion of the wood biomass was occurred in the range of 280 to $420^{\circ}C$, which was lower than that of coal. Forest product showed the lowest activation energy (0.4 kJ/mol) compared to that of other wood biomasses (about 6 to 14 kJ/mol) and coal (64 kJ/mol). In addition, the reaction rate constant of the wood biomass was lower than that of coal. These results indicate the higher combustion initiation rate of wood biomass due to the high content of volatile matter, which had a low boiling point.