Browse > Article
http://dx.doi.org/10.14478/ace.2011.22.3.296

A Study on Combustion Characteristics of Wood Biomass for Cogeneration Plant  

Ryu, Jeong-Seok (Engineering Solution, Technical Solution Team, Korea East-West Power)
Kim, Ki-Seok (Department of Chemistry, Inha University)
Park, Soo-Jin (Department of Chemistry, Inha University)
Publication Information
Applied Chemistry for Engineering / v.22, no.3, 2011 , pp. 296-300 More about this Journal
Abstract
In this work, various wood biomasses were used to determine the combustion characteristics for the fuel of cogeneration plant. Combustion characteristics of four types, i.e., (i) forest products, (ii) recycled wood, (iii) empty fruit bunch, and (iv) palm kernel shell, were examined via thermal gravimetric analyzer (TGA) in air atmosphere and coal was used as a comparison group. From the TGA results, the combustion of the wood biomass was occurred in the range of 280 to $420^{\circ}C$, which was lower than that of coal. Forest product showed the lowest activation energy (0.4 kJ/mol) compared to that of other wood biomasses (about 6 to 14 kJ/mol) and coal (64 kJ/mol). In addition, the reaction rate constant of the wood biomass was lower than that of coal. These results indicate the higher combustion initiation rate of wood biomass due to the high content of volatile matter, which had a low boiling point.
Keywords
wood biomass; forest product; coal; combustion reaction;
Citations & Related Records
Times Cited By KSCI : 3  (Citation Analysis)
Times Cited By SCOPUS : 0
연도 인용수 순위
1 M. V. de Velden, J. Baeyens, A. Brems, B. Janssens, and R. Dewil, Renew. Energ., 35, 232 (2010).   DOI   ScienceOn
2 K. Papadikis, S. Gu, and A. V. Bridgwater, Chem. Eng. J., 149, 417 (2009).   DOI   ScienceOn
3 C. J. Kim, J. Korean Soc. Combustion, 4, 11 (1999).
4 P. Kaushal and J. Abedi, J. Ind. Eng. Chem., 16, 748 (2010).   DOI   ScienceOn
5 P. McKendry, Bioresource Technol., 83, 37 (2002).   DOI   ScienceOn
6 M. H. Duku, S. Gu, and E. B. Hagan, Renew. Sust. Energ. Rev., 15, 404 (2011).   DOI   ScienceOn
7 V. Nallathambi Gunaseelan, Biomass Bioenergy, 13, 83 (1997).   DOI   ScienceOn
8 D. Timmons and C. ViteriMejía, Biomass Bioenergy, 34, 1419 (2010).   DOI   ScienceOn
9 M. Stahl, K. Granstrom, J. Berghel, and R. Renstrom, Biomass Bioenergy, 27, 621 (2004).   DOI   ScienceOn
10 W. G. Glasser, Lignin. In : R. P. Overend, T. A. Milne, L. K. Mudge, ed. Fundamentals of biomass thermochemical conversion, London: Elsevier (1985).
11 C. D. Blasi, Prog. Energy Combust. Sci., 34, 47 (2008).   DOI   ScienceOn
12 K. H. Kim. I. Y. Eom, S. M. Lee, S. T. Choi, and J. W. Choi, J. Korean Ind. Eng. Chem., 16, 918 (2010).   DOI   ScienceOn
13 H. H. Kim, R. H. Park, and Y. J. Kim, J. Korean Ind. Eng. Chem., 15, 870 (2004).
14 K. Raveendran, A. Ganesh, and K. Khilar, Fuel, 75, 987 (1996).   DOI   ScienceOn
15 B. M. Jenkins, L. L. Baxter, Jr., T. R. Miles, and T. R. Miles, Fuel Process Technol., 54, 17 (1998).   DOI   ScienceOn
16 J. Werther, M. Saenger, E. U. Hartge, T. Ogada, and Z. Siagi, Progr. Energy Combust. Sci., 26, 1 (2000).   DOI   ScienceOn
17 D. L. Pyle and C. A. Zaror, Chem. Eng. Sci., 19, 147 (1984).
18 M. J. Antal and G. Varhegyi, Ind. Eng. Chem. Res., 34, 703 (1995).   DOI   ScienceOn
19 F. J. Kilzer and A. Broido, Pyrodynamics, 2, 151 (1965).
20 A. G. W. Bradbury, Y. Sakai, and F. Shafizadeh, J. Appl. Polym. Sci., 23, 3271 (1979).   DOI   ScienceOn
21 J. E. White, W. J. Catallo, and B. L. Legendre, J. Anal. Appl. Pyrolysis, in press.
22 A. W. Coats and J. P. Redfern, Nature, 201, 68 (1964).   DOI   ScienceOn
23 D. W. Kim, J. M. Lee, J. S. Kim, and P. K. Seon, Korean Chem. Eng. Res., 48, 58 (2010).