• Title/Summary/Keyword: cofactor

Search Result 249, Processing Time 0.026 seconds

Coenzyme Q10 improves sperm motility and antioxidant status in infertile men with idiopathic oligoasthenospermia

  • Ahmed T Alahmar
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.49 no.4
    • /
    • pp.277-284
    • /
    • 2022
  • Objective: Oxidative stress is a key player in the development of idiopathic male infertility (IMI), and various antioxidants have been used for the treatment of IMI with inconsistent results. Coenzyme Q10 (CoQ10) is a cofactor and an antioxidant that may improve semen parameters and reduce oxidative stress in patients with idiopathic oligoasthenospermia (OA). Therefore, this study aimed to explore the effect of CoQ10 on semen parameters and antioxidant markers in patients with idiopathic OA. Methods: Fifty patients with idiopathic OA and 35 fertile controls were enrolled in this prospective controlled study. All participants underwent a comprehensive fertility assessment. All patients received CoQ10 (300 mg/day) orally once daily for 3 months. Semen parameters, seminal CoQ10 levels, reactive oxygen species (ROS) levels, total antioxidant capacity (TAC), superoxide dismutase (SOD), and glutathione peroxidase (GPx) were measured in patients and controls at the start of the study and after 3 months. Results: Treatment with CoQ10 resulted in increased sperm progressive motility (p<0.05), total motility (p<0.01), seminal TAC (p<0.01), SOD (p<0.05), GPx (p<0.001), and seminal CoQ10 (p<0.001) levels and reduced ROS (p<0.01) in patients as compared to baseline. Sperm concentration and motility were also significantly correlated with antioxidant measures and seminal CoQ10 levels (r=0.38-0.57). Conclusion: CoQ10 therapy (300 mg/day for 3 months) improved sperm motility and seminal antioxidant markers in patients with idiopathic OA. Therefore, CoQ10 could be a promising treatment for patients with idiopathic infertility and may improve their fertility potential.

Ginsenoside F2 Restrains Hepatic Steatosis and Inflammation by Altering the Binding Affinity of Liver X Receptor Coregulators

  • Kyurae Kim;Myung-Ho Kim;Ji In Kang;Jong-In Baek;Byeong-Min Jeon;Ho Min Kim;Sun-Chang Kim;Won-Il Jeong
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.89-97
    • /
    • 2024
  • Background: Ginsenoside F2 (GF2), the protopanaxadiol-type constituent in Panax ginseng, has been reported to attenuate metabolic dysfunction-associated steatotic liver disease (MASLD). However, the mechanism of action is not fully understood. Here, this study investigates the molecular mechanism by which GF2 regulates MASLD progression through liver X receptor (LXR). Methods: To demonstrate the effect of GF2 on LXR activity, computational modeling of protein-ligand binding, Time-resolved fluorescence resonance energy transfer (TR-FRET) assay for LXR cofactor recruitment, and luciferase reporter assay were performed. LXR agonist T0901317 was used for LXR activation in hepatocytes and macrophages. MASLD was induced by high-fat diet (HFD) feeding with or without GF2 administration in WT and LXRα-/- mice. Results: Computational modeling showed that GF2 had a high affinity with LXRα. LXRE-luciferase reporter assay with amino acid substitution at the predicted ligand binding site revealed that the S264 residue of LXRα was the crucial interaction site of GF2. TR-FRET assay demonstrated that GF2 suppressed LXRα activity by favoring the binding of corepressors to LXRα while inhibiting the accessibility of coactivators. In vitro, GF2 treatments reduced T0901317-induced fat accumulation and pro-inflammatory cytokine expression in hepatocytes and macrophages, respectively. Consistently, GF2 administration ameliorated hepatic steatohepatitis and improved glucose or insulin tolerance in WT but not in LXRα-/- mice. Conclusion: GF2 alters the binding affinities of LXRα coregulators, thereby interrupting hepatic steatosis and inflammation in macrophages. Therefore, we propose that GF2 might be a potential therapeutic agent for the intervention in patients with MASLD.

Insights into Enzyme Reactions with Redox Cofactors in Biological Conversion of CO2

  • Du-Kyeong Kang;Seung-Hwa Kim;Jung-Hoon Sohn;Bong Hyun Sung
    • Journal of Microbiology and Biotechnology
    • /
    • v.33 no.11
    • /
    • pp.1403-1411
    • /
    • 2023
  • Carbon dioxide (CO2) is the most abundant component of greenhouse gases (GHGs) and directly creates environmental issues such as global warming and climate change. Carbon capture and storage have been proposed mainly to solve the problem of increasing CO2 concentration in the atmosphere; however, more emphasis has recently been placed on its use. Among the many methods of using CO2, one of the key environmentally friendly technologies involves biologically converting CO2 into other organic substances such as biofuels, chemicals, and biomass via various metabolic pathways. Although an efficient biocatalyst for industrial applications has not yet been developed, biological CO2 conversion is the needed direction. To this end, this review briefly summarizes seven known natural CO2 fixation pathways according to carbon number and describes recent studies in which natural CO2 assimilation systems have been applied to heterogeneous in vivo and in vitro systems. In addition, studies on the production of methanol through the reduction of CO2 are introduced. The importance of redox cofactors, which are often overlooked in the CO2 assimilation reaction by enzymes, is presented; methods for their recycling are proposed. Although more research is needed, biological CO2 conversion will play an important role in reducing GHG emissions and producing useful substances in terms of resource cycling.

Secretory Expression System of Xylose Reductase (GRE3) for Optimal Production of Xylitol (Xylitol 생산에 최적화된 xylose reductase (GRE3)의 분비발현 시스템)

  • Jung, Hoe-Myung;Kim, Jae-Woon;Kim, Yeon-Hee
    • Journal of Life Science
    • /
    • v.26 no.12
    • /
    • pp.1376-1382
    • /
    • 2016
  • Xylitol is widely used in the food and medical industry. It is produced by the reduction of xylose (lignocellulosic biomass) in the Saccharomyces cerevisiae strain, which is considered genetically safe. In this study, the expression system of the GRE3 (YHR104W) gene that encodes xylose reductase was constructed to efficiently produce xylitol in the S. cerevisiae strain, and the secretory production of xylose reductase was investigated. To select a suitable promoter for the expression of the GRE3 gene, pGMF-GRE3 and pAMF-GRE3 plasmid with GAL10 promoter and ADH1 promoter, respectively, were constructed. The mating factor ${\alpha}$ ($MF{\alpha}$) signal sequence was also connected to each promoter for secretory production. Each plasmid was transformed into S. cerevisiae $SEY2102{\Delta}trp1$, and $SEY2102{\Delta}trp1$/pGMF- GRE3 and $SEY2102{\Delta}trp1$/pAMF-GRE3 transformants were selected. In the $SEY2102{\Delta}trp1$/pGMF-GRE3 strain, the total activity of xylose reductase reached 0.34 unit/mg-protein when NADPH was used as a cofactor; this activity was 1.5 fold higher than that in $SEY2102{\Delta}trp1$/pAMF-GRE3 with ADH1 as the promoter. The secretion efficiency was 91% in both strains, indicating that most of the recombinant xylose reductase was efficiently secreted in the extracellular fraction. In a baffled flask culture of the $SEY2102{\Delta}trp1$/pGMF-GRE3 strain, 12.1 g/l of xylitol was produced from 20 g/l of xylose, and ~83% of the consumed xylose was reduced to xylitol.

Biochemical Characteristics for the Cofactor Free Mutant of Yeast Homocysteine Catalyzing Enzyme, Cystathionine ${\beta}$-Synthase (조효소를 함유하지 않는 효모의 Homocysteine 분해효소, Cystathionine ${\beta}$-Synthase의 생화학적 특성)

  • Jhee, Kwang-Hwan;Cho, Hyun-Nam;Yang, Seun-Ah;Lee, In-Seun
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.3
    • /
    • pp.196-202
    • /
    • 2007
  • Mutations in the cystathionine ${\beta}$-synthase (CBS) gene cause homocystinuria, the most frequent inherited disorder in sulfur metabolism. CBS is the unique enzyme using both heme and pyridoxal 5-phosphate (PLP) for activity. Among the reported 140 mutations, one of the most common disease-causing alterations in human CBS is G307S mutation. To investigate the pathogenic mechanism of G307S by spectroscopic methods, we engineered the full length and the truncated G247S mutation of yeast CBS that is corresponding mutation to human G307S. Yeast CBS does not contain heme and thus gives a merit to study the spectroscopic properties. The UV-visible spectra of the purified full length and the truncated G247S yeast CBSs showed the total absence of PLP in the protein. The absence of PLP in G247S mutation was also confirmed by the PLP-cyanide adduct formation experiment, which was conducted by the incubation of the purified enzyme with KCN. The adducts were detected using a circular dichroism (CD) and a spectrofluorimeter. Radio isotope activity assay of full length and truncated G247S proteins also gave no activity. Our yeast G247S mutation data suggested that G307S might make the distortion of the active site so that cofactor PLP and substrate can not fit inside the active site. Our yeast CBS study addressed the reason why the G307S mutation in human CBS makes the enzyme inactive that consequently leads to severe clinical phenotype.

Effect of Iron Excess-induced Oxidative Stress on Platelet Aggregation (과잉 철로 유도된 산화적 스트레스가 혈소판 활성화에 미치는 작용)

  • Seo, Geun-Young;Park, Hyo-Jin;Jang, Sung-Geun;Park, Young-Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.35 no.8
    • /
    • pp.979-984
    • /
    • 2006
  • Although iron is essential for many physiological processes, excess iron can lead to tissue damage by promoting the generation of reactive oxygen species (ROS). There is increasing evidence that ROS might play an important role in the pathogenesis of cardiovascular disease. However, the effects of iron excess on platelet function and the thrombotic response to vascular injury are not well understood. We examined the effects of iron excess-induced oxidative stress and the antioxidants on platelet aggregation. Oxidative stress was accessed by either free iron $(Fe^{+2})$ or hydrogen peroxide $(H_2O_2)$, as well as their combination on washed rabbit platelets (WPs) in vitro. When WPs were stimulated with either $Fe^{+2}$ alone or a subthreshold concentration of collagen, which gave an aggregatory curve with a little effect, and a dose dependent increase in platelet aggregation was observed by increasing concentrations of $Fe^{+2}$ with $H_2O_2$. This aggregation was associated with the iron-catalyzed formation of hydroxyl radicals from $H_2O_2$, and were inhibited by NAD/NADP (proton acceptor), catalase $(H_2O_2\;scavenger)$, tiron (iron chelator), mannitol (hydroxyl radical scavenger), and indomethacin (cyclooxygenase inhibitor), but not by NADH/NADPH (proton donor), superoxide mutase, and aspirin. However, NADH/NADPH, an essential cofactor for the antioxidant capacity by the supply of reducing potentials, showed the effect of an enhanced radical formation, suggesting a role for NADH/NADPH-dependent oxidase. These results suggest that iron $(Fe^{+2})$ can directly interact with washed rabbit platelets and this aggregation be mediated by OH formation as in the Fenton reaction, inhibited by radical scavengers.

A Review of Sirtuin Inhibitors in Therapeutics, Pharmaceutics, and Plant Research (치료제, 조제학 및 식물을 위한 서투인 억제제의 유용성)

  • Lee, Yew
    • Journal of Life Science
    • /
    • v.30 no.1
    • /
    • pp.96-105
    • /
    • 2020
  • Sirtuin inhibitors are pharmaceutically and therapeutically valuable compounds that inhibit sirtuin, a type III histone deacetylase. Synthetic sirtuin inhibitors were discovered and characterized using cell-based screens in yeast (Saccharomyces cerevisiae) and have been used in the study of aging, carcinogenesis, and diabetes, all of which are related to sirtuin function. For medical applications, synthetic inhibitors have been further developed for increased potency and specificity, including compounds containing nicotinamide, thioacetyl lysine, β-naphthol, and indole derivatives. Suramin, tenovin, and their analogues were developed as a result. Sirtuin inhibitors were found to affect organic development and have been used to genetically modify plants, although a sirtinol-resistant mutation in the biosynthesis of a molybdopterin cofactor for an aldehyde oxidase has been identified. Some natural flavonoids, and catechin and quercetin derivatives also act as sirtuin inhibitors have been studied to identify a more potent inhibitor for therapeutic purposes. In this review, sirtuin is introduced and the therapeutic inhibitors that have been developed are presented, particularly sirtinol which has been used for genetic modification in plants though it was not designed to be so. Sirtuin inhibitors with greater potency and selectivity are required and those developed in pharmaceutics should be used in plant research to identify more authentic sirtuins in plants.

Studies on Albinic Flat-Fish Paralichthys olivaceus I. Effects of Enzyme Activities and Substrates on Melanin Formation (넙치의 백화현상 규명에 관한 연구 I. 멜라닌 색소 생성에 미치는 효소와 기질의 영향)

  • Choi Yeung Joan;Kang Seok-Joong;Cho Chang-Hwan;Myoung Jung-Goo;Kim Jong-Hyun
    • Journal of Aquaculture
    • /
    • v.3 no.2
    • /
    • pp.155-165
    • /
    • 1990
  • The albinic phenomenon of flat-fish (Paralichthys olivaceus) was investigated by measuring protein content, tyrosinase activity, amino acid composition, and contents of vitamin A and C. These materials in the flat-fish feed-stuff were also tested. The amount of skin protein was higher than that of muscle in normal flat-fish. Catechol and L-dopa oxidase activity did not differ between normal and albinic flat-fish. The free amino acid of skin in normal flat-fish was 7.5 times that in albinic one. Sulfur-containing amino acid in normal flat-fish was also 6.3 times that in albinic ones. Vitamin A was not detected in both of flat-fish. The content of vitamin C in normal flat-fish was 7.8 times that in albinic one. The contents of protein, sulfur-containing amino acid and vitamin C in micro-encapsulated feed (one commercial feed in Japan) were the highest among the feed-stuff used in this experiment. The melanin formation of flat-fish skin was affected by substrates such as aromatic amino acid and cofactor such as sulfur amino acid.

  • PDF

Salmonella Typhimurium SL1344 Utilizing Human Transferrin-bound Iron as an Iron Source Regardless of Siderophore-mediated Uptake (Salmonella Typhimurium SL1344의 사람의 트렌스페린(hTf)에 부착된 철 이용에 관한 연구)

  • Choe, Yunjeong;Yoo, Ah Young;Kim, Sam Woong;Hwang, Jihwan;Kang, Ho Young
    • Journal of Life Science
    • /
    • v.27 no.1
    • /
    • pp.72-77
    • /
    • 2017
  • Inorganic iron is essential for various metabolic processes, including RNA synthesis, electron transport, and oxygen detoxification in microorganisms. Many bacterial pathogens compete for iron acquisition in diverse environmental condition such as host. Salmonella Typhimurium SL1344 also requires inorganic iron as a cofactor for growth. When a M9 minimal liquid medium was supplemented with ethylenediamine di-o-hydroxyphenylactic acid (EDDA) which acts as an iron-chelating agent, growth of Salmonella Typhimurium SL1344 in the supplemented medium was completely arrested by deficient of useful iron under iron-depleted condition. However, a number of siderophores, which are small, high-affinity iron chelating compounds secreted by microorganisms such as bacteria and fungi, were produced for utilization of restricted iron under iron-depleted condition. A M9 minimal liquid medium complemented with human transferrin (hTf)-iron complex turned completely off production of siderophores, but growth of Salmonella Typhimurium SL1344 maintained level similar to compare one complemented with iron (III) chloride (FeCl3). This means that human transferrin (hTf)-bound iron can utilize via directly interaction with Salmonella Typhimurium SL1344 without productions of siderophores. Through construction and analysis of negative mutant for utilization of human transferrin (hTf)-bound iron, we confirm that the bacterium can directly use human transferrin (hTf)-bound iron without extracellularly intermediated carriers such as siderophores.

Development of aortic endothelial cells to express CD37 and CD73 isolated from alpha 1,3-galactosyltransferase knock-out and MCP expressing pig (alpha 1,3-galactosyltransferase 기능 제거 및 MCP 발현 형질전환 돼지의 대동맥 혈관내피세포에 CD37/CD73 발현 세포주 개발)

  • No, Jin-Gu;Byun, Sung-June;Yang, Hyeon;Ock, Sun A;Woo, Jae-Seok;Lee, Hwi-Cheul;Hwang, In-sul;Kim, Ji-Youn;Park, Sang Hyoun;Lee, Joo Young;Oh, Keon Bong
    • Journal of Embryo Transfer
    • /
    • v.33 no.3
    • /
    • pp.129-137
    • /
    • 2018
  • Acute vascular rejection has been known as a main barrier occurring in a xenograted tissue of alpha 1,3-galactosyltransferase knock-out (GalT KO) pig into a non-human primate (NHP). Adenosine which is a final metabolite following sequential hydrolysis of nucleotide by ecto-nucleotidases such as CD39 and CD73, act as a regulator of coagulation, and inflammation. Thus xenotransplantation of CD39 and CD73 expressing pig under the GalT KO background could lead to enhanced survival of recipient NHP. We constructed a human CD39 and CD73 expression cassette designed for endothelial cell-specific expression using porcine Icam2 promoter (pIcam2-hCD39/hCD73). We performed isolation of endothelial cells (pAEC) from aorta of 4 week-old GalT KO and membrane cofactor protein expressing pig ($GalT^{-MCP/-MCP}$). We were able to verify that isolated cells were endothelial-like cells using immunofluorescence staining analysis with von Willebrand factor antibody, which is well known as an endothelial maker, and tubal formation assay. To find optimal condition for efficient transfection into pAEC, we performed transfection with GFP expression vector using four programs of nucleofection, M-003, U-023, W-023 and Y-022. We were able find that the program W-023 was optimal for pAEC with regard to viability and transfection efficiency by flow cytometry and fluorescent microscopy analyses. Finally, we were able to obtain $GalT^{-MCP/-MCP}/CD39/CD73$ pAEC expressing CD39 and CD73 at levels of 33.3% and 26.8%, respectively. We suggested that pACE isolated from $GalT^{-MCP/-MCP}$ pig might be provided as a basic resource to understand biochemical and molecular mechanisms of the rejections and as an alternative donor cells to generate $GalT^{-MCP/-MCP}/CD39/CD73$ pig expressing CD39 and CD73 at endothelial cells.