• Title/Summary/Keyword: coefficient of derailment

Search Result 90, Processing Time 0.021 seconds

A study on the parameters to enhance derailment safety (탈선 안전성능 향상을 위한 매개변수에 관한 연구)

  • Hwang, Jeong-Taek;Lee, Hi-Sung
    • Journal of the Korean Society for Railway
    • /
    • v.10 no.5
    • /
    • pp.626-631
    • /
    • 2007
  • Technical requirements associated with derailment to ensure running safety of train are discussed. By using estimated derailment coefficient ratio, interaction of various parameters such as operation velocity, curve radius, cant, track irregularity, suspension stiffness and static wheel load ratio are analyzed to enhance derailment safety. Sensitivity analysis in terms of pattern and passage speed of curve is performed by using rolling stock and track conditions associated with SMRT Line No. 5.

Evaluation of critical speed & running performance for Swing Motion Bogie (스웡모션보기의 임계속도와 주행성능 평가)

  • 함영삼;허현무;오택열
    • Proceedings of the KSR Conference
    • /
    • 2002.10b
    • /
    • pp.892-897
    • /
    • 2002
  • The research was requested by Meridian Rail Corporation in United States. The Swing Motion Bogie can application by Korea style if synthesize study result of bogie strength evaluation, bogie dynamic characteristics analysis, actual test(maximum speed, derailment coefficient, lateral force, vertical force, vibration acceleration, steady state lateral acceleration) etc..

  • PDF

A Study on the Optimum Design of Rail Vehicle Suspension Characteristics (철도차량 현가특성의 최적설계에 관한 연구)

  • 조동현;임진수
    • Proceedings of the KSR Conference
    • /
    • 1998.11a
    • /
    • pp.413-420
    • /
    • 1998
  • In this study, optimum design methodology for rail vehicle suspension characteristics is suggested. Three parameters, primary lateral/longitunal stiffness and secondary lateral stiffness, are selected as design parameters. critical speed, suspension stroke trade-off and derailment coefficient are selectee as performance constraints. The optimum parameters to maximize ride quality are evaluated under the constraints. Steady-state curiving model to be able to evaluate derailment coefficient is developed. The combined design procedure is developed to evaluate Three parameters at the same time.

  • PDF

Evaluation of running safety and measuring wheel/rail force for korean high speed railway vehicle (한국형 고속철도차량의 차륜/레일 작용력 측정 및 주행안전성 평가)

  • 함영삼;오택열;백영남
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2003.06a
    • /
    • pp.507-512
    • /
    • 2003
  • The railroad is a means of large transportation which has many latents such as a safety and a regularity. That is a results from various confidential performance tests and evaluations of the system. The railroad system consist of various subsystems - vehicle, power supply, signal, communications, track structures, operations, etc. Among them, as an item of safety evaluation there is a measurement of wheel/rail force, so called a measurement of derailment coefficient. This is a very important item because a derailment of a train will bring about a big accident. Especially it is more important in high speed rail of which operation speed is over two times as fast as existing rail. In this paper, it is introduced to preprocess the wheelset for measuring wheel/rail force of high speed rail, such as to treat a measuring wheelset, its finite element analysis, adhesion of strain gauges and static toad test, running test result of main line.

  • PDF

Evaluation of Running Stability of Tilting Trains in Conventional Curved Track (틸팅차량의 기존선 곡선부 주행안정성 평가)

  • 엄기영;엄주환;유영화;최정호
    • Journal of the Korean Society for Railway
    • /
    • v.7 no.4
    • /
    • pp.367-373
    • /
    • 2004
  • The investigation of running stability of the train for curved track is necessary in view of preventing the train from derailment caused by unbalanced forces transferred from the wheel and guaranteeing moderate level of running safety in curve sections. This paper carried out an analysis of running stability of tilting trains in conventional line which the test operation of tilting trains under development are scheduled. For this purpose, the wheel load and lateral pressure to the rail are evaluated. The criteria for the calculated wheel load and derailment coefficient are compared to the design criteria for running stability. It is founded that the running stability of tilting trains for curved track is guaranteed to have sufficient safety and the train speed in curve is governed by the geometric layout of track rather than the criteria for running stability.

Safety evaluation of tilting train on circular curve (틸팅열차의 원곡선부 주행시 안전성 평가)

  • Kim, Sang-Soo;Eum, Ki-Young;Bae, Jae-Hyoung
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1703-1712
    • /
    • 2010
  • The safety of tilting train running on curved track is, in general, evaluated with a derailment coefficient calculated by the ratio of wheel load and lateral force, Particularly on curve, the wheel load and lateral force on rail may cause trackbed to be deformed, depending on their intensity, and moreover, often result in critical accident such as derailment. This study hence was intended to identify the cause of wheel load and lateral force so as to suggest the allowable wheel load reduction rate, lateral force limit and derailment coefficient, thereby quantitatively evaluating the operational safety of tilting train. This study therefore was aimed to analyze the wheel load and lateral force occurred during tilting train's operation on circular curve in such a way of comparing with traditional trains, by axle and speed, in a bid to eventually evaluate the operational safety of tilting train.

  • PDF

Evaluation of Curving Performance and Running Safety of New High-Power Electric Locomotive (신형 고출력 전기기관차의 곡선추종성 및 주행안전성 평가)

  • Ham, Young Sam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.37 no.6
    • /
    • pp.827-832
    • /
    • 2013
  • In this study, curve responsiveness was assessed based on the lateral force and running safety was evaluated based on the wheel unloading ratio and derailment coefficient, which is the ratio of the wheel load and the lateral force. The evaluation of the curving performance and running safety of the new high-power electric locomotive showed that the derailment coefficient appeared higher when the wheel-set was set to the front of the train instead of being placed backward, and the maximum value of the derailment coefficient was recorded as 0.572 on the Gyeongbu line. Furthermore, the lateral force increased in curved sections, and it appeared to be proportional to the curve radius. Meanwhile, a maximum axis lateral force of 77.6 kN was recorded on the Taebaek line, and the wheel unloading ratio was 47.6% on the Yeongdong line. Finally, the running safety at the maximum speed as well as the through-curve performance of the curve radius satisfied the required standards.

Static and dynamic responses of a tied-arch railway bridge under train load

  • Gou, Hongye;Yang, Biao;Guo, Wei;Bao, Yi
    • Structural Engineering and Mechanics
    • /
    • v.71 no.1
    • /
    • pp.13-22
    • /
    • 2019
  • In this paper, the static and dynamic responses of a tied-arch railway bridge under train load were studied through field tests. The deflection and stresses of the bridge were measured in different static loading scenarios. The dynamic load test of the bridge was carried out under the excitation of running train at different speeds. The dynamic properties of the bridge were investigated in terms of the free vibration characteristics, dynamic coefficients, accelerations, displacements and derailment coefficients. The results indicate that the tie of the measuring point has a significant effect on the vertical movement of the test section. The dynamic responses of arch bridge are insensitive to the number of trains. The derailment coefficients of locomotive and carriage increase with the train speed and symmetrically distributed double-line loads reduce the train derailment probability.

Measurement of contact position between wheel and rail for clarification of derailment mechanism (탈선 매커니즘 해명을 위한 차륜/레일 접촉위치 측정)

  • Ham Young-Sam;Hong Jai-Sung;Lee Kwan-Sup;Seo Byung-Wook
    • Proceedings of the KSR Conference
    • /
    • 2004.06a
    • /
    • pp.608-612
    • /
    • 2004
  • Safety from derailment has been evaluated according to the magnitude of the derailment coefficient, which does not always ensure sufficient safety evaluation, and is not necessarily helpful in clarifying the mechanism of derailment. When wheel rolls, point of contact between wheel and rail was change continuously and flange touches with rail. Established gauge so that can measure location of contact point between wheel and rail by strain gauge. Also, wish to describe result that compose bridge circuit and execute load test.

  • PDF

Evaluation of Train Running Safety for Direct Fixation Concrete Track on Light Rapid Transit (경전철 직결식 콘크리트 궤도구조의 열차주행안전성 평가)

  • Choi, Jung-Youl;Kim, Jun-Hyung;Chung, Jee-Seung;Lee, Sun-Gil
    • Journal of the Korean Society of Safety
    • /
    • v.32 no.5
    • /
    • pp.41-46
    • /
    • 2017
  • The coefficient of derailment and the rate of wheel load reduction were used as the index of train running safety that was directly affected the train derailment safety. In aspects of track, the train running safety depends on the complex interaction between wheel and rail, and the track-vehicle conditions (i.e., the curvature, cant, track system, vehicle speed and the operation conditions, etc). In this study, the relationship between the train running safety and the track curvature and vehicle speed for direct fixation concrete tracks currently employed in Korean light rapid transit was assessed by performing field tests using actual vehicles running along the service lines. The measured dynamic wheel load, lateral wheel load and lateral displacement of rail head were measured for same train running on four tested tracks under real conditions, which included curved and tangent tracks placed on the tunnel and bridge, thus increasing the train speed by approximately maximum design speed of each test site. Therefore, the measured dynamic track response was applied to the running safety analysis in order to evaluate the coefficient of derailment, the rate of wheel load reduction and the track gauge widening at each test site, and compare with the corresponding Korean train running safety standard. As the results, the lateral track response of direct fixation concrete track appeared to increase with the decreased track curvature; therefore, it was inferred that the track curvature directly affected the train running safety.