• Title/Summary/Keyword: coefficient of consolidation

Search Result 244, Processing Time 0.026 seconds

Studies on the Consolidation Characteristics of Marine Clay Stabilized with Lime and Briquette Ash (석회 및 연탄회 안정처리토의 압밀특성에 관한 연구)

  • 김재영;유병옥;주재우
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.4
    • /
    • pp.48-58
    • /
    • 1992
  • This study was conducted to investigate the consolidation characteristics of the marine clay, treated with predetermined ratios of lime and briquette ash. The standard consolidation test was performed for the sample of mixture remoulded under the condition of optimum moisture content. The results obtained were as follows ; 1.The increase of the consolidation coefficient due to load increament was larger in the lime treated soil and briquette ash treated soil than in the untreated soil. The decrease of the compression index due to admixing ratio of additives was smaller in the former than in the latter. 2.The increase of the secondary consolidation coefficient of the untreated soil due to load increment was minimal, while that of lime treated soil and the lime-briquette ash treated soil was conspicuous and that of briquette ash treated soil was slight. 3.The $C\alpha$/Cc relationship of untreated soil was represented by colsely distributed points. That of briquette ash treated soil, lime treated soil and the lime-briquette ash treated soil was represented by linear distribution. The $C\alpha$/Cc values of untreated soil, briquette ash treated soil and lime treated soil were approximately 0.049, 0.044 and 0.031, respectively. 4.The maximum consolidation coefficient was obtained with lime and briquette ash (lime : briquette .h 2 :1) mixture ratio of 15%. And the minimum secondary consolidation coefficient, compression index was obtained with same mixture ratio. The required quantity of lime could be reduced and the consolidation was accelerated by applying the above mixture ratio.

  • PDF

A Study on the Soft Ground Distubance Characteristics by Large Block Sample (대형자연시료를 이용한 지반교란 특성에 관한 연구)

  • Yu, Seong-Jin
    • Journal of the Korea Construction Safety Engineering Association
    • /
    • s.43
    • /
    • pp.98-106
    • /
    • 2007
  • In this paper, a ground disturbance effects, strength and consolidation characteristics of soft clay through using the large block samples($\theta$:300mm, H:400mm) and the piston samples, f hose which had been gathered in west coast and south coast. Especially, we have assessed the coefficient of horizontal consolidation when penetrating the mandrel considering the variance of ratio between diameter and height in drainage sample through the experiment of the oedometer test and Rowecell and also investigated the disturbance area in smear zone by interior model test, the strength originated by disturbance, the variance in characteristics of the consolidation. As the result, the large block sample has been investigated that ihe uniaxial compression test(qu) was shown bigger than the piston sample by about 11-19%. Under the size of anistropy in consolidation, the coefficient ratio of consolidation(ch/cv,) perfomed by standard consolidation test(SC) was shown bigger than that of (Cro/Cv) by the Rowecell test. And the coefficient ratio of consolidation(Cro/Cv) perfomed by piston sample was evaluated bigger than that Of (Cro/Cv) by the large block sample by about 0.9-1.9. The coefficient ratio of consolidation along with the variance in ratio of between diameter and height when penetrating the mandrel was shown big difference according to the characteristics of soil of the specimen. In addition, ds/dw of smear zone at the marine clay in west-south was ranged from 1.6 to 4.2. The width of variance in rat io[(qud)/(quud)] of strength n the area between disturbance and undisturbance was shown big as about 72-91% but the principle was judged with the similiar range when the decrease of the strength in smear zone become the zone under 25% in unditurbance area.

  • PDF

A New Proposed Technique for a Secondary Consolidation Coefficient Based on the Constant Rate of Strain Test (CRS시험에 의한 2차압밀계수의 결정방법 제안)

  • 김형주;이민선;이용주;김대우
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.8
    • /
    • pp.113-121
    • /
    • 2004
  • The present study is suggested to estimate the degree of secondary consolidation caused by various changes of stress such as loading, unloading and reloading in improving poor subsoil through pre-compression loading construction method and, for this purpose, examined the characteristics of the consolidation of Kunsan clay through incremental loading test (IL) using standard consolidation tester and constant loading rate test (CLR), which were adapted from the constant rate of strain test (CRS). In addition, after CRS test, this study determined the characteristics of secondary consolidation and relationships among void ratio, effective stress and time according to the ratio of effective over-consolidation on reloading at the point of time of random expansion. Kunsan clay had larger expansion and smaller secondary consolidation settlement when the ratio of effective over-consolidation was high. In addition, when loading was applied after the load was removed at once, the secondary consolidation coefficient $C'_{\alpha}$ was smaller than that when the load was removed gradually, and when the ratio of effective over-consolidation was over 1.4 a similar value was produced. Based on the entire settlement resulting from reloading, the secondary consolidation coefficient $C"_{\alpha}$ increased non-linearly with the lapse of time but the final value was similar to that in the case of rapid removal. The strain velocity of void ratio was in a regular linear relationship with the increase of loading time regardless of the ratio of effective over-consolidation in both tests and it grew smaller with the increase of the ratio of effective over-consolidation.tion.

Identification of the strain-dependent coefficient of permeability by combining the results of experimental and numerical oedometer tests with free lateral movement

  • Balic, Anis;Hadzalic, Emina;Dolarevic, Samir
    • Coupled systems mechanics
    • /
    • v.11 no.1
    • /
    • pp.1-14
    • /
    • 2022
  • The key parameter that affects the consolidation process of soil is the coefficient of permeability. The common assumption in the consolidation analysis is that the coefficient of permeability is porosity-dependent. However, various authors suggest that the strain-dependency of the coefficient of permeability should also be taken into account. In this paper, we present results of experimental and numerical analyses, with an aim to determine the strain-dependency of the coefficient of permeability. We present in detail both the experimental procedure and the finite element formulation of the two-dimensional axisymmetric numerical model of the oedometer test (standard and modified). We perform a set of experimental standard and modified oedometer tests. We use these experimental results to validate our numerical model and to define the model input parameter. Finally, by combining the experimental and numerical results, we propose the expression for the strain-dependent coefficient of permeability.

The Study of Secondary Compression Index on Soft Clays (점성토의 2차압축지수에 관한 연구)

  • 윤일형;서정석;도헌영
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.537-544
    • /
    • 2002
  • Deformations of clays continue beyond the end of primary consolidation: this is secondary consolidation. Mesri(1973) have shown that C $\_$a/' is related to the natural water content W$\_$n/. For clays, C $\_$a/' is approximately equal to 0.01 W $\_$n/. And the ratio C $\_$ae// C $\_$c/ is approximately equal to 0.04. In this study, coefficient of secondary compression was analyzed by the consolidation tests datas in the 3 sites. In conclusion, coefficient of secondary compression was similar to Mesri's suggestions.

  • PDF

Dextermination of the Horizontal Coefficient of Consolidation by Using Pore Pressure Measurements behind the Cone Tip (콘 선단부 뒤에서 관측된 간극수압 소산곡선을 이용한 수평 압밀계수 결정)

  • 김영상;이승래
    • Geotechnical Engineering
    • /
    • v.14 no.4
    • /
    • pp.141-150
    • /
    • 1998
  • Based on the authors' previous research, we have conducted more researches on finding out the coefficient of consolidation from Piezocone dissipation test results, especially measured behind the cone tip which is mostly used in Korea, by adopting the optimization technique. By analyzing numerical and real field examples, it can be found that the adopted optimum technique that minimizes the differences between the predicted dissipation curve and the measured one gives consistent and convergent results, irrespective of initial values. Such technique also provides horizontal coefficient of consolidation which is able to simulate real field consolidation behavior more effectively.

  • PDF

피에조 콘 소산시험을 이용한 압밀계수 추정시 이론해의 선택 및 현장지반의 압밀도 평가

  • 이승래;김영상
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1998.04a
    • /
    • pp.37-46
    • /
    • 1998
  • Several researchers have developed a number of theoretical time factors to determine the coefficient of consolidation by biezocone excess pore water dissipation test in soft clay deposits. However, depending on the assumptions and analytical techniques, the estimated coefficient of consolidation could be in a considerably wide range even for a specific degree of consolidation. These solutions are obtained from an initial excess porewater pressure distribution which can be determined from. either the cavity expansion theory or the strain path method. The 야ssipation of the initial excess porelvater pressure has been usally simulated by means of linear-uncoupled consolidation analysis and then the dissipation curve is normalized by the initial excess porewater pressure for easy use. However. since there is no guidelines or rules on which method gives the best solution for obtaining the coefficient of consolidation from the dissipation curve, the final selection was only based on engineer's extrience and Judgements. Thus, such an arbitrary selection might be inappropriate for a specific site to characterize the consolidation behavior. In this paper, we reviewed various theoretical time factors and, based on this consideration, we mentioned needs for researches in selecting a specific solution that is compatible for Korean clays. Also we listed some source of errors that can be encountered in the procedure of dissipation analysis.

  • PDF

Permeability and Consolidation Characteristics of Clayey Sand Soils (점토 함유량에 따른 점토질 모래의 투수 및 압밀 특성 평가)

  • Kim, Kwangkyun;Park, Duhee;Yoo, Jin-Kwon;Lee, Janggeun
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.3
    • /
    • pp.61-70
    • /
    • 2013
  • Evaluation of permeability and coefficient of consolidation of clayey sand is critical in analyzing ground stability or environmental problems such as prediction of pollutant transport in groundwater. In this study, permeability tests using a flexible wall permeameter are performed to derive the coefficient of consolidation and permeability of reconstituted soil samples with various mixing ratios of kaolin clays and two different types of sands, which are Jumunjin and Ottawa sands. The test results indicate that the coefficient of consolidation and permeability plots linearly against clay contents in semi-log scale graphs for low clay mixing ratios ranging between 10 to 30%. It is also demonstrated that coefficient of consolidation and permeability of sand and clay mixture are dependent on the soil structure. Contrary to previous findings, the permeability is shown to be independent of the void ratio at low mixing ratios, which can be classified as non-floating fabric. The permeability decreases with the void ratio for floating fabric.

The Study on Rigidity Index of the Soft Clay in Korea (국내 연약지반의 강성지수(Ir)에 관한 연구)

  • 서수봉;윤일형;이재식;구남실
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.49-54
    • /
    • 2000
  • Several soil parameters can be calculated for results of Piezocone test; sensitivity, soil classification, OCR, undrained shear strength, coefficient of consolidation etc., and used to analysis geotechnical problems. Particularly, the coefficient of consolidation which is related to degree of consolidation varies according to rigidity index(I/sub r/). In this study, rigidity index(I/sub r/) was analyzed by Roy's formula. Trixial tests and unconfined compression tests data in the ten sites was analyzed. In conclusion, rigidity index(I/sub r/) was suggested such as rigidity index(I/sub r/) = 15∼60, average rigidity index value(I/sub r/) of approximately 33 within a country.

  • PDF

Correlation of Vertical and Horizontal Coefficient of Consolidation by Laboratory test and Field Test (현장.실내 시험에 의한 연직 및 수평 압밀계수의 상관관계 분석)

  • 구남실;이재식;윤일형;노영목
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.10a
    • /
    • pp.117-122
    • /
    • 1999
  • Laboratory and field investigations of the coefficient of vertical and horizontal consolidation for Yangsan clay deposit were carried out using the conventional oedometer, Rowecell and piezocone test. Correlation among these test methods were also studied. In this paper, the relationship between vertical and horizontal consolidation were suggested such as C$\sub$h(Oed)/=0.75∼1.46 C$\sub$v(Oed)/, C$\sub$h(Rowecell) =1.95∼2.93 C$\sub$v(Oed)/, C$\sub$h(piezocone)/ =1.0∼5.0 C$\sub$v(Oed)/. As a result, a fair approximate estimations of C$\sub$h/ can be made by simple test using the conventional oedometer tests.

  • PDF