• 제목/요약/키워드: coefficient and frequency

검색결과 2,644건 처리시간 0.03초

목재단면(木材斷面)의 흡음계수(吸音係數)와 음향(音響)임피이던스 (Acoustic Absorption Coefficient and Impedance of Wood Sections)

  • 홍병화
    • Journal of the Korean Wood Science and Technology
    • /
    • 제17권2호
    • /
    • pp.26-33
    • /
    • 1989
  • The acoustic absorption coefficient and acoustic impedance of 5 species of softwood(sonamoo, sam namoo, gusang namoo, hwaback, sitka spruce) and 5 species of hardwood (Mulgusul namoo, Italian popular, white meranti, red meranti, kalantas) were measured by the standing wave method. which is simple in the setup and gives more accurate result than does any other measuring method. The dependence of the absorption coefficient and complex acoustic impedance on the wood sections. thickness of the sample itself and the back air gap was investigated experimentally in the frequency range from 200Hz to 1800Hz, and the result are as follows: 1. The acoustic absorption coefficient of wood sections was higher on the cross section than radial and tangential sections. 2) The acoustic absorption coefficient were higher in the frequency range from 400Hz to 600Hz, but decreased in the frequency above 600Hz. 3. The genenal tendency of the variation of the normal acoustic impedance was increased according to the frequency. 4. The acoustic absortion coefficient was increased in the to 7mm-thick sample and decreased in 9mm-thick sample. 5. The higher acoustic absorption coefficient was shown in the case with the backing an gap than in the case without the gap.

  • PDF

지능형 서비스 로봇을 위한 잡음에 강인한 문맥독립 화자식별 시스템 (Noise Robust Text-Independent Speaker Identification for Ubiquitous Robot Companion)

  • 김성탁;지미경;김회린;김혜진;윤호섭
    • 한국HCI학회:학술대회논문집
    • /
    • 한국HCI학회 2008년도 학술대회 1부
    • /
    • pp.190-194
    • /
    • 2008
  • 본 논문은 지능형 서비스 로봇의 여러 기술들 중에서 기본적인 기술인 화자식별 기술에 관한 내용이다. 화자식별 기술은 화자의 음성신호를 이용하여 등록된 화자들 중에서 가장 유사한 화자를 찾아내는 것이다. 기존의 mel-frequency cepstral coefficient 를 이용한 화자식별 시스템은 무잡음 환경에서는 높은 성능을 보장하지만 잡음환경에서는 성능이 급격하게 떨어진다. 이렇게 잡음환경에서 성능이 떨어지는 요인은 등록환경과 식별환경이 다른 불일치문제 때문이다. 본 논문에서는 불일치문제를 해결하기 위해 relative autocorrelation sequence mel-frequency cepstral coefficient 를 사용하였다. 또한, 기존의 relative autocorrelation sequence mel-frequency cepstral coefficient 의 제한된 정보문제와 잔여잡음문제를 해결하기 위해 멀티스트리밍 방법과 멀티스트리밍 방법에 특정벡터 재결합 방법을 결합한 하이브리드 방법을 제한 하였다. 실험결과 제한된 방법들이 기존의 특정벡터보다 잡음환경에서 높은 화자식별 성능을 보여주었다.

  • PDF

Free Vibration Analysis of Axisymmetric Conical Shell

  • Choi, Myung-Soo;Yeo, Dong-Jun;Kondou, Takahiro
    • 동력기계공학회지
    • /
    • 제20권2호
    • /
    • pp.5-16
    • /
    • 2016
  • Generally, methods using transfer techniques, like the transfer matrix method and the transfer stiffness coefficient method, find natural frequencies using the sign change of frequency determinants in searching frequency region. However, these methods may omit some natural frequencies when the initial frequency interval is large. The Sylvester-transfer stiffness coefficient method ("S-TSCM") can always obtain all natural frequencies in the searching frequency region even though the initial frequency interval is large. Because the S-TSCM obtain natural frequencies using the number of natural frequencies existing under a searching frequency. In this paper, the algorithm for the free vibration analysis of axisymmetric conical shells was formulated with S-TSCM. The effectiveness of S-TSCM was verified by comparing numerical results of S-TSCM with those of other methods when analyzing free vibration in two computational models: a truncated conical shell and a complete (not truncated) conical shell.

A Noisy Infrared and Visible Light Image Fusion Algorithm

  • Shen, Yu;Xiang, Keyun;Chen, Xiaopeng;Liu, Cheng
    • Journal of Information Processing Systems
    • /
    • 제17권5호
    • /
    • pp.1004-1019
    • /
    • 2021
  • To solve the problems of the low image contrast, fuzzy edge details and edge details missing in noisy image fusion, this study proposes a noisy infrared and visible light image fusion algorithm based on non-subsample contourlet transform (NSCT) and an improved bilateral filter, which uses NSCT to decompose an image into a low-frequency component and high-frequency component. High-frequency noise and edge information are mainly distributed in the high-frequency component, and the improved bilateral filtering method is used to process the high-frequency component of two images, filtering the noise of the images and calculating the image detail of the infrared image's high-frequency component. It can extract the edge details of the infrared image and visible image as much as possible by superimposing the high-frequency component of infrared image and visible image. At the same time, edge information is enhanced and the visual effect is clearer. For the fusion rule of low-frequency coefficient, the local area standard variance coefficient method is adopted. At last, we decompose the high- and low-frequency coefficient to obtain the fusion image according to the inverse transformation of NSCT. The fusion results show that the edge, contour, texture and other details are maintained and enhanced while the noise is filtered, and the fusion image with a clear edge is obtained. The algorithm could better filter noise and obtain clear fused images in noisy infrared and visible light image fusion.

Vibration analysis of porous nanocomposite viscoelastic plate reinforced by FG-SWCNTs based on a nonlocal strain gradient theory

  • Khazaei, Pegah;Mohammadimehr, Mehdi
    • Computers and Concrete
    • /
    • 제26권1호
    • /
    • pp.31-52
    • /
    • 2020
  • This paper investigates the size dependent effect on the vibration analysis of a porous nanocomposite viscoelastic plate reinforced by functionally graded-single walled carbon nanotubes (FG-SWCNTs) by considering nonlocal strain gradient theory. Therefore, using energy method and Hamilton's principle, the equations of motion are derived. In this article, the effects of nonlocal parameter, aspect ratio, strain gradient parameter, volume fraction of carbon nanotubes (CNTs), damping coefficient, porosity coefficient, and temperature change on the natural frequency are perused. The innovation of this paper is to compare the effectiveness of each mentioned parameters individually on the free vibrations of this plate and to represent the appropriate value for each parameter to achieve an ideal nanocomposite plate that minimizes vibration. The results are verified with those referenced in the paper. The results illustrate that the effect of damping coefficient on the increase of natural frequency is significantly higher than the other parameters effect, and the effects of the strain gradient parameter and nonlocal parameter on the natural frequency increase are less than damping coefficient effect, respectively. Furthermore, the results indicate that the natural frequency decreases with a rise in the nonlocal parameter, aspect ratio and temperature change. Also, the natural frequency increases with a rise in the strain gradient parameter and CNTs volume fraction. This study can be used for optimizing the industrial and medical designs, such as automotive industry, aerospace engineering and water purification system, by considering ideal properties for the nanocomposite plate.

강성계수의 전달을 이용한 일정 단면을 갖는 비틀림 축계의 고유진동수 민감도 해석 (Sensitivity Analysis for Natural Frequency of Torsional Shafting with Constant Cross Section Using Transfer of Stiffness Coefficient)

  • 최명수;변정환
    • 동력기계공학회지
    • /
    • 제16권2호
    • /
    • pp.11-16
    • /
    • 2012
  • In this paper, the authors formulate the sensitivity analysis algorithm for the natural frequency of a torsional shafting by expanding the transfer stiffness coefficient method. The basic concept of the present algorithm is based on the transfer of sensitivity stiffness coefficient, which is the derivative of stiffness coefficient with respect to design parameter, at every node from the first node to the last node in analytical model. The effectiveness of the present algorithm is confirmed by comparing the results of the sensitivity analysis and those of the reanalysis for the natural frequencies of a torsional shafting with a constant cross section. In numerical calculation, the design parameter is the diameter of the shaft element of the torsional shafting.

Wavelet에 의한 의용영상의 병소부위 특징추출 (Disease Region Feature Extraction of Medical Image using Wavelet)

  • 이상복;이주신
    • 한국컴퓨터정보학회논문지
    • /
    • 제3권3호
    • /
    • pp.73-81
    • /
    • 1998
  • 본 논문에서는 의용영상의 병소부위 특징을 추출하여 판별 자동화할 수 있는 방안을 제안하였다. 전처리 과정으로서 의용영상의 형태정보는 입력영상을 DWT(Discrete wavelet transform)에 의해 4레벨 DWT 계수 행렬을 구하고 계수 행렬의 특징에 따라 저주파 계수 행렬로부터 저주파 특징 파라미터 32개, 수평 고주파 계수 행렬로부터 수평 고주파특징 파라미터 16개, 수직 고주파 계수 행렬로부터 수직 고주파 특징 파라미터 16개, 그리고, 대각 고주파 계수 행렬로부터 대각 고주파 특징 파라미터 32개 등 모두 96개의 특징 파라미터를 추출하였다. 본 논문에서 제안된 알고리즘을 이용하면 자동 판별 시스템을 구축할수 있고, PACS의 성능 향상에 크게 기여할 것이다.

  • PDF

The Influence of Coupling Coefficient between Wayside Transmitter and On-board Receiver upon Operation Characteristics of the ATS System

  • Kim, Min-Seok;Kim, Min-Kyu;Lee, Sang-Hyeok;Lee, Jong-Woo
    • International Journal of Railway
    • /
    • 제4권1호
    • /
    • pp.12-18
    • /
    • 2011
  • The ATS system is used to provide wayside signaling. Currently, the oscillation frequency is set at 78[kHz] in the normal state. As the on-board receiver crosses over the wayside transmitter, the oscillation frequency is changed by capacitors of the wayside transmitter in a manner dependent on the train speed. As the oscillation frequency is changed, the waveform is modified in the wayside transmitter as well as in the on-board receiver. When there are other signal systems such as a ATO system present near the wayside transmitter, frequency interference occurs. This phenomenon arises since other signals or communication frequencies present will be included in the waveform. Trains often stop due to these other frequencies included in the waveform. In this paper, a model of the interaction between the wayside transmitter and on-board receiver is suggested and frequency response in the wayside transmitter and on-board receiver in the presence of the other signals are estimated by the coupling coefficient. Also, the coupling coefficients are estimated, and the optimal value is proposed.

Flood Frequency Analysis by the Box-Cox Transformation

  • 이순혁;조성갑;박명곤
    • 한국농공학회지
    • /
    • 제32권E호
    • /
    • pp.20-32
    • /
    • 1990
  • Abstract This study was conducted to pursue the normalization of frequency distribution by making an approach to the coefficient of skewness to nearly zero through the Box-Cox transformation, to get probable flood flows can be calculated by means of the transformation equation which has been derivated by Box-Cox transformation in the annual maximum series of the applied watersheds. It has been concluded that Box-Cox transfromation is proved to be more efficient than logarithmic, square root and SMEMAX transformation which is based on the trigonometric solution of a right triangle whose three verteces repesent the smallest, median and largest observed values of a population in making the coefficient of skewness nearer to zero. Consequently it is shown that probable flood flows according to the return period based on Box-Cox transformation are closer to the observed data as compared to other methods including SMEMAX transformation and fitted probability distributions such as the three parameter lognormal and the type I extremal distribution for the applied watersheds.

  • PDF

Curtain감의 음향특성에 관한 연구(제1보) -Curtain감의 구성특성을 중심으로- (A Study on the Acoustical characteristics of Curtain Fabrics (part 1) -by Constructional Characteristics of Curtain Fabrics-)

  • 정운자;강경자;조현혹
    • 한국의류학회지
    • /
    • 제3권2호
    • /
    • pp.23-27
    • /
    • 1979
  • The normal transmission characteristics of curtain fabrics were measured by sound level meter. Transmission coefficient was calculated by difference of incidence SPL and transmission SPL. The relation between this value and factors relating to the structure of curtain fabrics were investigated. The results of experiment were shown follow; 1. Transmission coefficients(approximately over $95\%$) of sound in curtain fabrics differ from according to the frequency. It was lower in 500Hz frequency, on the other hand, higher in 400, 640. 1000Hz frequency. It had a tendency to frequency among the samples. 2. The greater cover factor of sample was, the smaller the transmission coefficient of sound was. It was not influenced by thickness. 3. Air permeability was increased as the transmission coefficient of sound were greater. (correl. ation coefficient=0.83) 4. In the case of special single cloth weave(special honeycomb weave), there sometimes took place that transmission SPL was greater than incidence SPL.

  • PDF