• Title/Summary/Keyword: coding genes

Search Result 571, Processing Time 0.025 seconds

Mapping, Tissue Distribution and Polymorphism of Porcine Retinol Binding Protein Genes (RBP5 and RBP7)

  • Gong, W.H.;Tang, Z.L.;Han, J.L.;Yang, S.L.;Wang, H.;Li, Y.;Li, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.21 no.11
    • /
    • pp.1544-1550
    • /
    • 2008
  • The retinoids (vitamin A and its derivatives) play a critical role in vision, growth, reproduction, cell differentiation and embryonic development. Using the IMpRH panel, porcine cellular retinol binding protein genes 5 and 7 (RBP5 and RBP7) were assigned to porcine chromosomes 5 and 6, respectively. The complete coding sequences (CDS) of the RBP5 and RBP7 genes were amplified using the reverse transcriptase polymerase chain reaction (RT-PCR) method, and the deduced amino acid sequences of both genes were compared to human corresponding proteins. The mRNA distributions of the two genes in adult Wuzhishan pig tissues (lung, skeletal muscle, spleen, heart, stomach, large intestine, lymph node, small intestine, liver, brain, kidney and fat) were examined. A total of nine single nucleotide polymorphisms (SNPs) were identified in two genes. Three of these SNPs were analyzed using the polymerase chain reaction-restriction-fragment length polymorphism (PCR-RFLP) method in Laiwu, Wuzhishan, Guizhou, Bama, Tongcheng, Yorkshire and Landrace pig breeds. Association analysis of genotypes of these SNP loci with economic traits was done in our experimental populations. Significant associations of different genotypes of $RBP5-A/G^{63}$, $RBP5-A/G^{517}$ and $RPB5-T/C^{intron1-90}$ loci with traits including maximum carcass length (LM), minimum carcass length (LN), marbling score (MS), back fat thickness at shoulder (SBF), meat color score (MCS) and hematocrit (HCT) were detected. These SNPs may be useful as genetic markers in genetic improvement for porcine production.

High Efficiency Retroviral Vectors with Improved Safety

  • Yu, Seung-Shin;Kim, Jong-Mook;Kim, Sunyoung
    • Toxicological Research
    • /
    • v.17
    • /
    • pp.157-166
    • /
    • 2001
  • Almost all currently available retroviral vectors based on murine leukemia virus (MLV) contain one or more viral coding sequences. Because these sequences are also present in the packaging genome, it has been suggested that homologous recombination may occur between the same nucleotide sequence in the packaging genome and the vector, resulting in the production of replication competent retrovirus (RCR). Up until now, it has been difficult to completely remove viral coding sequences since some were thought to be involved in the optimum function of the retroviral vector. For example, the gag coding sequence present in almost all available retroviral vectors has been believed to be necessary for efficient viral packaging, while the pol coding sequence present in the highly efficient vector MFG has been thought to be involved in achieving the high levels of gene expression. However, we have now developed a series of retroviral vectors that are absent of any retroviral coding sequences but produce even higher levels of gene expression without compromising viral titer. In these vectors, the intron and exon sequences from heterologous cellular or viral genes are present. When compared to the well known MLV-based vectors, some of these newly developed vectors have been shown to produce significantly higher levels of gene expression for a longer period. In an experimental system that can maximize the production of RCR, our newly constructed vectors produced an absence of RCR. These vectors should prove to be safer than other currently available retroviral vectors containing one or more viral coding sequences.

  • PDF

High Efficiency Retroviral Vectors with Improved Safety

  • Yu, Seung-Shin;Kim, Jong-Mook;Kim, Sun-Young
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.10a
    • /
    • pp.31-50
    • /
    • 2000
  • Almost all currently available retroviral vectors based on murine leukemia virus (MLV) contain one or more viral coding sequences Because these sequences are also present in the packaging genome, it has been suggested that homologous recombination may occur between the same nucleotide sequence in the packaging genome and the vector, resulting in the production of replication competent retrovirus (RCR). Up until now, it has been difficult to completely remove viral coding sequences since some were thought to be involved in the optimum function of the retroviral vector. For example, the gag coding sequence present in almost all available retroviral vectors has been believed to be necessary for efficient viral packaging, while the pol coding sequence present in the highly efficient vector MFG has been thought to be involved in achieving the high levels of gene e(pression. However, we have now developed a series of reroviral vectors that are absent of any retroviral coding sequences but produce even higher levels of gene expression without compromising viral titer. In these vectors the intron and exon sequences from heterologous cellular or viral genes are present, When compared to the well blown MLV-based vectors, some of these newly developed vectors have been shown to produce significantly higher levels of gene expression for a longer period. In an experimental system that can maximize the production of RCR, our newly constructed vectors produced an absence of RCR. These vectors should prove to be safer than other currently available retroviral vectors containing one or more viral coding sequences

  • PDF

Cloning and Sequence Analysis of the Cellobiohydrolase I Genes from Some Basidiomycetes

  • Chukeatirote, Ekachai;Maharachchikumbura, Sajeewa S.N.;Wongkham, Shannaphimon;Sysouphanthong, Phongeun;Phookamsak, Rungtiwa;Hyde, Kevin D.
    • Mycobiology
    • /
    • v.40 no.2
    • /
    • pp.107-110
    • /
    • 2012
  • Genes encoding the cellobiohydrolase enzyme (CBHI), designated as cbhI, were isolated from the basidiomycetes Auricularia fuscosuccinea, Pleurotus giganteus, P. eryngii, P. ostreatus, and P. sajor-caju. Initially, the fungal genomic DNA was extracted using a modified cetyltrimethyl ammonium bromide (CTAB) protocol and used as a DNA template. The cbhI genes were then amplified and cloned using the pGEM-T Easy Vector Systems. The sizes of these PCR amplicons were between 700~800 bp. The DNA sequences obtained were similar showing high identity to the cbhI gene family. These cbhI genes were partial consisting of three coding regions and two introns. The deduced amino acid sequences exhibited significant similarity to those of fungal CBHI enzymes belonging to glycosyl hydrolase family 7.

Identification of Novel Non-Metal Haloperoxidases from the Marine Metagenome

  • Gwon, Hui-Jeong;Teruhiko, Ide;Shigeaki, Harayama;Baik, Sang-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.835-842
    • /
    • 2014
  • Haloperoxidase (HPO, E.C.1.11.1.7) is a metal-containing enzyme oxidizing halonium species, which can be used in the synthesis of halogenated organic compounds, for instance in the production of antimicrobial agents, cosmetics, etc., in the presence of halides and $H_2O_2$. To isolate and evaluate a novel non-metal HPO using a culture-independent method, a cassette PCR library was constructed from marine seawater in Japan. We first isolated a novel HPO gene from Pseudomonas putida ATCC11172 by PCR for constructing the chimeric HPO library (HPO11172). HPO11172 showed each single open-reading frame of 828 base pairs coding for 276 amino acids, respectively, and showed 87% similarity with P. putida IF-3 sequences. Approximately 600 transformants screened for chimeric genes between P. putida ATCC11173 and HPO central fragments were able to identify 113 active clones. Among them, we finally isolated 20 novel HPO genes. Sequence analyses of the obtained 20 clones showed higher homology genes with P. putida or Sinorhizobium or Streptomyces strains. Although the HPO A9 clone showed the lowest homology with HPO11172, clones in group B, including CS19, showed a relatively higher homology of 80%, with 70% identy. E. coli cells expressing these HPO chimeric genes were able to successfully bioconvert chlorodimedone with KBr or KCl as substrate.

Isolation and Characterization of Chlorella Virus from Fresh Water in Korea and Application in Chlorella Transformation System

  • Park, Hye-Jin;Yoon, Hong-Mook;Jung, Heoy-Kyung;Choi, Tae-Jin
    • The Plant Pathology Journal
    • /
    • v.21 no.1
    • /
    • pp.13-20
    • /
    • 2005
  • Chlorella viruses are large icosahedral, plaque-forming, dsDNA viruses that infect certain unicellular, chlorellalike green algae. The genomic DNA of over 300 kb contains many useful genes and promoters. Over 40 chlorella viruses have been isolated from fresh water in Korea since 1998. The viruses were amplified initially in chlorella strain NC64A, and pure isolates were obtained by repeated plaque isolation. SDS-PAGE analysis revealed similar but distinct protein patterns, both among the group of purified viruses and in comparison with the prototype chlorella virus PBCV-1. Digestions of the 330- to 350-kb genomic DNAs with 10 restriction enzymes revealed different restriction fragment patterns among the isolates. The tRNA-coding regions of 8 chlorella viruses were cloned and sequenced. These viruses contain 14-16 tRNA genes within a 1.2- to 2-kb region, except for the SS-1 isolate, which has a 1039-bp spacer in a cluster of 11 tRNA genes. Promoter regions of several early genes were isolated and their activities were analyzed in transformed chlorella. Some promoters showed stronger activity than commonly used CaMV 35S promoter and chlorella transformation vectors for heterologous protein are beings constructed using these promoters.

Statistical Analysis of Gene Expression in Innate Immune Responses: Dynamic Interactions between MicroRNA and Signaling Molecules

  • Piras, Vincent;Selvarajoo, Kumar;Fujikawa, Naoki;Choi, Sang-Dun;Tomita, Masaru;Giuliani, Alessandro;Tsuchiya, Masa
    • Genomics & Informatics
    • /
    • v.5 no.3
    • /
    • pp.107-112
    • /
    • 2007
  • MicroRNAs (miRNAs) are known to negatively control protein-coding genes by binding to messenger RNA (mRNA) in the cytoplasm. In innate immunity, the role of miRNA gene silencing is largely unknown. In this study, we performed microarray-based experiments using lipopolysaccharide (LPS)-stimulated macrophages derived from wild-type, MyD88 knockout (KO), TRIF KO, and MyD88/TRIF double KO mice. We employed a statistical approach to determine the importance of the commonality and specificity of miRNA binding sites among groups of temporally co-regulated genes. We demonstrate that both commonality and specificity are irrelevant to define a priori groups of co-down regulated genes. In addition, analyzing the various experimental conditions, we suggest that miRNA regulation may not only be a late-phase process (after transcription) but can also occur even early (1h) after stimulation in knockout conditions. This further indicates the existence of dynamic interactions between miRNA and signaling molecules/transcription factor regulation; this is another proof for the need of shifting from a 'hard-wired' paradigm of gene regulation to a dynamical one in which the gene co-regulation is established on a case-by-case basis.

Complete genome sequence of Lactobacillus plantarum JBE245 isolated from Meju (메주에서 분리한 Lactobacillus plantarum JBE245 균주의 유전체 서열 분석)

  • Heo, Jun;Uhm, Tai-Boong
    • Korean Journal of Microbiology
    • /
    • v.53 no.4
    • /
    • pp.344-346
    • /
    • 2017
  • Lactobacillus plantarum is widely found in fermented foods and has various phenotypic and genetic characteristics to adapt to the environment. Here we report the complete annotated genome sequence of the L. plantarum strain JBE245 (= KCCM43243) isolated for malolactic fermentation of apple juice. The genome comprises a single circular 3,262,611 bp chromosome with 2907 coding regions, 45 pseudogenes, and 91 RNA genes. The genome contains 4 malate dehydrogenase genes, 3 malate permease genes and various types of plantaricin-synthesizing genes. These genetic traits meet the selection criteria of the strains that should prevent the spoilage of apple juice during fermentation and efficiently convert malate to lactic acid.

Complete Mitochondrial Genome Sequences of Chinese Indigenous Sheep with Different Tail Types and an Analysis of Phylogenetic Evolution in Domestic Sheep

  • Fan, Hongying;Zhao, Fuping;Zhu, Caiye;Li, Fadi;Liu, Jidong;Zhang, Li;Wei, Caihong;Du, Lixin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.29 no.5
    • /
    • pp.631-639
    • /
    • 2016
  • China has a long history of sheep (Ovis aries [O. aries]) breeding and an abundance of sheep genetic resources. Knowledge of the complete O. aries mitogenome should facilitate the study of the evolutionary history of the species. Therefore, the complete mitogenome of O. aries was sequenced and annotated. In order to characterize the mitogenomes of 3 Chinese sheep breeds (Altay sheep [AL], Shandong large-tailed sheep [SD], and small-tailed Hulun Buir sheep [sHL]), 19 sets of primers were employed to amplify contiguous, overlapping segments of the complete mitochondrial DNA (mtDNA) sequence of each breed. The sizes of the complete mitochondrial genomes of the sHL, AL, and SD breeds were 16,617 bp, 16,613 bp, and 16,613 bp, respectively. The mitochondrial genomes were deposited in the GenBank database with accession numbers KP702285 (AL sheep), KP981378 (SD sheep), and KP981380 (sHL sheep) respectively. The organization of the 3 analyzed sheep mitochondrial genomes was similar, with each consisting of 22 tRNA genes, 2 rRNA genes (12S rRNA and 16S rRNA), 13 protein-coding genes, and 1 control region (D-loop). The NADH dehydrogenase subunit 6 (ND6) and 8 tRNA genes were encoded on the light strand, whereas the rest of the mitochondrial genes were encoded on the heavy strand. The nucleotide skewness of the coding strands of the 3 analyzed mitogenomes was biased toward A and T. We constructed a phylogenetic tree using the complete mitogenomes of each type of sheep to allow us to understand the genetic relationships between Chinese breeds of O. aries and those developed and utilized in other countries. Our findings provide important information regarding the O. aries mitogenome and the evolutionary history of O. aries inside and outside China. In addition, our results provide a foundation for further exploration of the taxonomic status of O. aries.

Transcriptional Regulation of Genes by Enhancer RNAs (인핸서 RNA에 의한 유전자 전사 조절)

  • Kim, Yea Woon;Kim, AeRi
    • Journal of Life Science
    • /
    • v.26 no.1
    • /
    • pp.140-145
    • /
    • 2016
  • Genes in multicellular organisms are transcribed in development, differentiation, or tissue-specific manners. The transcription of genes is activated by enhancers, which are transcription regulatory elements located at long distances from the genes. Recent studies have reported that noncoding RNAs are transcribed from active enhancers by RNA polymerase II (RNA Pol II); these are called enhancer RNAs (eRNAs). eRNAs are transcribed bi-directionally from the enhancer core, and are capped on the 5’ end but not spliced or polyadenylated on the 3’ end. The transcription of eRNAs requires the binding of transcription activators on the enhancer and associates positively with the transcription of the target gene. The transcriptional inhibition of eRNAs or the removal of eRNA transcripts results in the transcriptional repression of the coding gene. The transcriptional procedure of eRNAs causes enhancer- specific histone modifications, such as histone H3K4me1/2. eRNA transcripts directly interact with Mediator and Rad21, a cohesin subunit, generating a chromatin loop structure between the enhancer and the promoter of the target gene. The recruitment of RNA Pol II into the promoter and its elongation through the coding region are facilitated by eRNAs. Here, we will review the features of eRNAs, and discuss the mechanism of eRNA transcription and the roles of eRNAs in the transcriptional activation of target genes.