• Title/Summary/Keyword: coded diversity

Search Result 131, Processing Time 0.021 seconds

Performance Analysis of Convolution Coded Multicarrier DS/CDMA Systems (길쌈부호화 여러 반송파 직접수열 부호분할 다중접속 시스템의 성능)

  • 이주미;송익호;권형문;김병윤
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.3B
    • /
    • pp.251-258
    • /
    • 2002
  • In this paper, an adaptive convolutional coding method in multicarrier direct sequence code division multiple access (DS/CDMA) systems is considered. In order to accommodate a number of coding rates easily and make the encoder and decoder structure simple, we use the rate compatible punctured convolutional (RCPC) code. To achieve maximum data throughput, an adaptive rate system based on the channel state information (the SINR estimate) is proposed. We show that the proposed adaptive rate convolution coded multicarrier DS/CDMA systems can enhance spectral efficiency and provide frequency diversity.

Theory and Design of Near-Optimal MIMO OFDM Transmission System for Correlated Multipath Rayleigh Fading Channels

  • Hung, Kun-Chien;Lin, David W.
    • Journal of Communications and Networks
    • /
    • v.9 no.2
    • /
    • pp.150-158
    • /
    • 2007
  • We consider channel-coded multi-input multi-output (MIMO) orthogonal frequency-division multiplexing (OFDM) transmission and obtain a condition on its signal for it to attain the maximum diversity and coding gain. As this condition may not be realizable, we propose a suboptimal design that employs an orthogonal transform and a space-frequency interleaver between the channel coder and the multi-antenna OFDM transmitter. We propose a corresponding receiving method based on block turbo equalization. Attention is paid to some detailed design of the transmitter and the receiver to curtail the computational complexity and yet deliver good performance. Simulation results demonstrate that the proposed transmission technique can outperform the conventional coded MIMO OFDM and the MIMO block single-carrier transmission with cyclic prefixing.

Distributed satellite-terrestrial diversity schemes using turbo coded STC (터보부호화된 시공간부호를 이용한 위성-지상 분산 다이버시티 기법)

  • Park, Un-Hee;Kim, Young-Min;Kim, Soo-Young;Kim, Hee-Wook;Ahn, Do-Seob
    • Journal of Satellite, Information and Communications
    • /
    • v.4 no.2
    • /
    • pp.28-33
    • /
    • 2009
  • In this paper, we evaluate the performance of various diversity techniques which can contribute to provide efficient multimedia broadcasting services via hybrid/integrated satellite and terrestrial network. Space-time coding can achieve the diversity gain in a multi-path environment without additional bandwidth requirement. Recent study results reported that satellite systems can achieve high diversity gains by appropriate utilization of STC and/or forward error correction. Based on these previous study results, we present various cooperative diversity techniques by combing STC and rate compatible turbo codes in order to realize the transmit diversity for the mobile satellite system. The satellite and several terrestrial repeaters operate in unison to send the encoded signals, so that receiver may realize diversity gain. The results demonstrated in this paper can be utilized in future system implementation.

  • PDF

Turbo-coded STC schemes for an integrated satellite-terrestrial system for cooperative diversity (협동 다이버시티 이득을 위한 위성-지상간 통합망에서의 터보 부호화된 시공간 부호)

  • Park, Un-Hee;Kim, Soo-Young;Kim, Hee-Wook;Ahn, Do-Seob
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1A
    • /
    • pp.62-70
    • /
    • 2010
  • In this paper, we evaluate the performance of various diversity techniques which can contribute to provide efficient multimedia broadcasting services via hybrid/integrated satellite and terrestrial network. Space-time coding (STC) can achieve the diversity gain in a multi-path environment without additional bandwidth requirement. Recent study results reported that satellite systems can achieve high diversity gains by appropriate utilization of STC and/or forward error correction schemes. Based on these previous study results, we present various cooperative diversity techniques by combining STC and rate compatible turbo codes in order to realize the transmit diversity for the mobile satellite system. The satellite and several terrestrial repeaters operate in unison to send the encoded signals, so that receiver may realize diversity gain. The results demonstrated in this paper can be utilized in future system implementation.

BER of Rectangular QAM signals with MRC over Correlated Nakagami Fading Channels

  • Baek Kyung Hoon;Hyun Kwang Min;Yoon Dong Weon;Park Sang Kyu
    • Proceedings of the IEEK Conference
    • /
    • 2004.08c
    • /
    • pp.653-657
    • /
    • 2004
  • The average bit error rate (HER) performance of a Gray coded arbitrary rectangular quadrature amplitude modulation (AR-QAM) signal with maximal ratio combining (MRC) diversity in an arbitrarily correlated Nakagami-m fading channel is derived and analyzed. The derived two types of general solutions are a simple closed-form and an integral form, depending on the types of the values (integer and non-integer) of the fading parameter. Using the derived equations in this paper, we analyzed the HER performances numerically based on the practical base station antenna configuration. The results show that MRC reception is a very effective scheme so far even though the combined signals are not independent each other because of the correlation values. The antenna height and separation of the MRC system relate to the correlation coefficient value between antennas, and go a long way with the diversity advantage. In particular, it is needed to be determined the antenna height that is carefully do for the diversity advantage because the correlation coefficient and the antenna height gain are contrary to each other from the aspect of the system performance. The expressions presented here can offer a convenient way to evaluate the exact HER performance of an arbitrary rectangular QAM signal with MRC diversity reception for various cases of practical interest on a correlated Nakagami fading channel.

  • PDF

Joint Processing of Zero-Forcing Detection and MAP Decoding for a MIMO-OFDM System

  • Sohn, In-Soo;Ahn, Jae-Young
    • ETRI Journal
    • /
    • v.26 no.5
    • /
    • pp.384-390
    • /
    • 2004
  • We propose a new bandwidth-efficient technique that achieves high data rates over a wideband wireless channel. This new scheme is targeted for a multiple-input multiple- output orthogonal frequency-division multiplexing (MIMO-OFDM) system that achieves transmit diversity through a space frequency block code and capacity enhancement through the iterative joint processing of zero-forcing detection and maximum a posteriori (MAP) decoding. Furthermore, the proposed scheme is compared to the coded Bell Labs Layered Space-Time OFDM (BLAST-OFDM) scheme.

  • PDF

Performance Analysis of Reed-Solomon Coded M-ary FSK Modulation in Nakagami Fading Channels (나카가미 페이딩 채널에서 M-ary FSK 변조된 리드솔로몬 부호화의 성능분석)

  • Kang Heau-Jo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.7
    • /
    • pp.1202-1207
    • /
    • 2006
  • In this paper we analyze the performance improvement of the M-ary FSK systems for low power and low data rate applications. This contribution presents a unified analysis of its MRC diversity, uncoded and performance in A WGN, m=2, m=3, Rayleigh and one sided Gaussian fading channels using optimum noncoherent demodulation with Reed-Solomon(RS) codes. The results of this paper should be useful as benchmarks of obtainable performance and as a reference for validating the results of simulation studies when slow fading models are applicable.

Optimal Decoding Algorithm with Diversity Reception for a Fading Channel (협대역 무선채널에서 최적의 다이버시티 수신알고리즘 연구)

  • 한재충
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.8A
    • /
    • pp.1156-1162
    • /
    • 1999
  • In this paper, the problem of decoding transmitted data sequence with diversity reception in the presence of nondelective fading is studied. The expection maximizaton (EM) algorithm is employed to derive an interactive algorithm. The algorithm performs block-by-block coherent decoding with the aid of pilot symbols. It is shown that the complexity of the algorithm grows linearly as a function of sequence length. The performance of the algorithm is shown to better than that of the conventional pilot symbol aided (PSI) algorithm. Simulation results are presented to assess the performance of the algorithm and the results are compared with that of the conventional PSI alforithm.

  • PDF

Space-Time Carrier Interferometry Techniques with Low-density Parity Check Code for High-speed Multimedia Communications

  • Chung Yeon-Ho
    • Journal of Korea Multimedia Society
    • /
    • v.9 no.6
    • /
    • pp.728-734
    • /
    • 2006
  • Carrier interferometry code is considered as a promising scheme that provides significant performance improvement via frequency diversity effect. Space-time coding is commonly employed to achieve a performance gain through space diversity. The combination of these techniques and forward error correction coding will lead to enhanced system capacity and performance. This paper presents a low-density parity check (LDPC) coded space-time orthogonal frequency division multiplexing (OFDM) transmission scheme with carrier interferometry code for high-capacity and high-performance mobile multimedia communications. Computer simulations demonstrate that the proposed mobile multimedia transmission system offers a considerable performance improvement of approximately 9dB in terms of Eb/No in the Rayleigh fading channel with relatively low delay spread, in comparison with space-time OFDM. Performance gains are further increased, comparing with traditional OFDM systems.

  • PDF

Reduced Complexity Signal Detection for OFDM Systems with Transmit Diversity

  • Kim, Jae-Kwon;Heath Jr. Robert W.;Powers Edward J.
    • Journal of Communications and Networks
    • /
    • v.9 no.1
    • /
    • pp.75-83
    • /
    • 2007
  • Orthogonal frequency division multiplexing (OFDM) systems with multiple transmit antennas can exploit space-time block coding on each subchannel for reliable data transmission. Spacetime coded OFDM systems, however, are very sensitive to time variant channels because the channels need to be static over multiple OFDM symbol periods. In this paper, we propose to mitigate the channel variations in the frequency domain using a linear filter in the frequency domain that exploits the sparse structure of the system matrix in the frequency domain. Our approach has reduced complexity compared with alternative approaches based on time domain block-linear filters. Simulation results demonstrate that our proposed frequency domain block-linear filter reduces computational complexity by more than a factor of ten at the cost of small performance degradation, compared with a time domain block-linear filter.