• 제목/요약/키워드: code complexity

검색결과 595건 처리시간 0.023초

Bit-Rate Control Using Histogram Based Rate-Distortion Characteristics (히스토그램 기반의 비트율-왜곡 특성을 이용한 비트율 제어)

  • 홍성훈;유상조;박수열;김성대
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제24권9B호
    • /
    • pp.1742-1754
    • /
    • 1999
  • In this paper, we propose a rate control scheme, using histogram based rate-distortion (R-D) estimation, which produces a consistent picture quality between consecutive frames. The histogram based R-D estimation used in our rate control scheme offers a closed-form mathematical model that enable us to predict the bits and the distortion generated from an encoded frame at a given quantization parameter (QP) and vice versa. The most attractive feature of the R-D estimation is low complexity of computing the R-D data because its major operation is just to obtain a histogram or weighted histogram of DCT coefficients from an input picture. Furthermore, it is accurate enough to be applied to the practical video coding. Therefore, the proposed rate control scheme using this R-D estimation model is appropriate for the applications requiring low delay and low complexity, and controls the output bit-rate ad quality accurately. Our rate control scheme ensures that the video buffer do not underflow and overflow by satisfying the buffer constraint and, additionally, prevents quality difference between consecutive frames from exceeding certain level by adopting the distortion constraint. In addition, a consistent considering the maximum tolerance BER of the voice service. Also in Rician fading channel of K=6 and K=10, considering CLP=$10^{-3}$ as a criterion, it is observed that the performance improment of about 3.5 dB and 1.5 dB is obtained, respectively, in terms of $E_b$/$N_o$ by employing the concatenated FEC code with pilot symbols.

  • PDF

LLR-based Cooperative ARQ Protocol in Rayleigh Fading Channel (레일리 페이딩 채널에서 LLR 기반의 협력 ARQ 프로토콜)

  • Choi, Dae-Kyu;Kong, Hyung-Yun
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • 제45권4호
    • /
    • pp.31-37
    • /
    • 2008
  • Conventional cooperative communications can attain gain of spatial diversity and path loss reduction because destination node independently received same signal from source node and relay node located between source node and destination node. However, these techniques bring about decreased spectral efficiency with relay node and increased complexity of receiver by using maximal ratio combining (MRC). This paper has proposed cooperative ARQ protocol that can improve the above problems and can get the better performance. This method can increase the spectral efficiency than conventional cooperative communication because if the received signal from source node is satisfied by the destination preferentially, the destination transmits ACK message to both relay node and source node and then recovers the received signal. In addition, if ARQ message indicates NACK relay node operates selective retransmission and we can increase reliability of system compared with that of general ARQ protocol in which source node retransmits data. In the proposed protocol, the selective retransmission and ARQ message are to be determined by comparing log-likelihood ratio (LLR) computation of received signal from source node with predetermined threshold values. Therefore, this protocol don't waste redundant bandwidth with CRC code and can reduce complexity of receiver without MRC. We verified spectral efficiency and BER performance for the proposed protocol through Monte-Carlo simulation over Rayleigh fading plus AWGN.

Lightweight video coding using spatial correlation and symbol-level error-correction channel code (공간적 유사성과 심볼단위 오류정정 채널 코드를 이용한 경량화 비디오 부호화 방법)

  • Ko, Bong-Hyuck;Shim, Hiuk-Jae;Jeon, Byeung-Woo
    • Journal of Broadcast Engineering
    • /
    • 제13권2호
    • /
    • pp.188-199
    • /
    • 2008
  • In conventional video coding, encoder complexity is much higher than that of decoder. However, investigations for lightweight encoder to eliminate motion prediction/compensation claiming most complexity in encoder have recently become an important issue. The Wyner-Ziv coding is one of the representative schemes for the problem and, in this scheme, since encoder generates only parity bits of a current frame without performing any type of processes extracting correlation information between frames, it has an extremely simple structure compared to conventional coding techniques. However, in Wyner-Ziv coding, channel decoding errors occur when noisy side information is used in channel decoding process. These channel decoding errors appear more frequently, especially, when there is not enough correlation between frames to generate accurate side information and, as a result, those errors look like Salt & Pepper type noise in the reconstructed frame. Since this noise severely deteriorates subjective video quality even though such noise rarely occurs, previously we proposed a computationally extremely light encoding method based on selective median filter that corrects such noise using spatial correlation of a frame. However, in the previous method, there is a problem that loss of texture from filtering may exceed gain from error correction by the filter for video sequences having complex torture. Therefore, in this paper, we propose an improved lightweight encoding method that minimizes loss of texture detail from filtering by allowing information of texture and that of noise in side information to be utilized by the selective median filter. Our experiments have verified average PSNR gain of up to 0.84dB compared to the previous method.

An I/O Interface Circuit Using CTR Code to Reduce Number of I/O Pins (CTR 코드를 사용한 I/O 핀 수를 감소 시킬 수 있는 인터페이스 회로)

  • Kim, Jun-Bae;Kwon, Oh-Kyong
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • 제36D권1호
    • /
    • pp.47-56
    • /
    • 1999
  • As the density of logic gates of VLSI chips has rapidly increased, more number of I/O pins has been required. This results in bigger package size and higher packager cost. The package cost is higher than the cost of bare chips for high I/O count VLSI chips. As the density of logic gates increases, the reduction method of the number of I/O pins for a given complexity of logic gates is required. In this paper, we propose the novel I/O interface circuit using CTR (Constant-Transition-Rate) code to reduce 50% of the number of I/O pins. The rising and falling edges of the symbol pulse of CTR codes contain 2-bit digital data, respectively. Since each symbol of the proposed CTR codes contains 4-bit digital data, the symbol rate can be reduced by the factor of 2 compared with the conventional I/O interface circuit. Also, the simultaneous switching noise(SSN) can be reduced because the transition rate is constant and the transition point of the symbols is widely distributed. The channel encoder is implemented only logic circuits and the circuit of the channel decoder is designed using the over-sampling method. The proper operation of the designed I/O interface circuit was verified using. HSPICE simulation with 0.6 m CMOS SPICE parameters. The simulation results indicate that the data transmission rate of the proposed circuit using 0.6 m CMOS technology is more than 200 Mbps/pin. We implemented the proposed circuit using Altera's FPGA and confimed the operation with the data transfer rate of 22.5 Mbps/pin.

  • PDF

Low-Cost Remote Power-Quality-Failure Monitoring System using Android APP and MCU (안드로이드 앱과 MCU를 이용한 저가형 원격 전원품질이상 감시 시스템)

  • Lim, Ho-Kyoun;Kim, Seo-Hwi;Lee, Seung-Hyeon;Choe, Sangho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • 제50권9호
    • /
    • pp.144-155
    • /
    • 2013
  • This paper presents a low-cost remote power-quality-failure monitoring system (RPMS) using Android App and TI MCU (micro-controller unit), which is appliable to a micro-grid. The designed RPMS testbed consists of smart nodes, a server, and Android APPs. Especially, the C2000-series MCU-based RPMS smart node that is low-cost compared to existing monitoring systems has both a signal processing function for power signal processing and a data transmission function for power-quality monitoring data transmission. The signal processing function implements both a wavelet-based power failure detection algorithm including sag, swell, and interruption, and a FFT-based power failure detection algorithm including harmonics such that reliable and real-time power quality monitoring is guaranteed. The data transmission function implements a low-complexity RPMS transmission protocol and defines a simple data format (msg_Diag) for power monitoring message transmission. We may watch the monitoring data in real time both at a server and Android phone Apps connected to the WiFi network (or WAN). We use RS-232 (or Bluetooth) as the wired (or wireless) communication media between a server and nodes. We program the RPMS power-quality-failure monitoring algorithm using C language in the CCS (Code Composer Studio) 3.3 environment.

Thermal Stress Analysis of the Disposal Canister for Spent PWR Nuclear Fuels (가압경수로 고준위폐기물 처분용기의 열응력 해석)

  • 권영주;하준용;최종원
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • 제15권3호
    • /
    • pp.471-480
    • /
    • 2002
  • In this paper, the thermal stress analysis of spent nuclear fuel disposal canister in a deep repository at 500 m underground is carried out for the basic design of the canister. Since the nuclear fuel disposal usually emits much heat, a long term safe repository at a deep bedrock is used. Under this situation, the canister experiences the thermal load due to the heat generation of spent nuclear fuels in the basket. Hence, in this paper the thermal stress analysis is executed using the finite element method. The finite clement code Eot the analysis Is not written directly, but a commercial code, NISA, is used because of the complexity of the structure and the large number of elements required for the analysis. The analysis result shows that even though the thermal stress is added to the stress generated by the hydrostatic underground water pressure and the swelling pressure of the bentonite buffer, the total stress is still smaller than the yield stress of the cast iron. Hence, the canister is still structurally safe when the thermal loads we included in the external loads applied on the canister.

Performance Evaluation of Bit Error Resilience for Pixel-domain Wyner-Ziv Video Codec with Frame Difference Residual Signal (화면 간 차이 신호에 대한 화소 영역 위너-지브 비디오 코덱의 비트 에러 내성 성능 평가)

  • Kim, Jin-Soo
    • The Journal of the Korea Contents Association
    • /
    • 제12권8호
    • /
    • pp.20-28
    • /
    • 2012
  • DVC(Distributed Video Coding) technique is a new paradigm, which is based on the Slepian-Wolf and Wyner-Ziv theorems. DVC offers not only flexible partitioning of the complexity between the encoder and decoder, but also robustness to channel errors due to intrinsic joint source-channel coding. Many conventional research works have been focused on the light video encoder and its rate-distortion performance improvement. However, in this paper, we propose a new DVC codec which is effectively applicable for error-prone environment. The proposed method adopts a quantiser without dead-zone and symmetric Gray code around zero value. Through computer simulations, the proposed method is evaluated by the bit errors position as well as the number of burst bit errors. Additionally, it is shown that the maximum and minimum transmission rate for the given application can be linearly determined by the number of bit errors.

S-FEAR: Secure-Fuzzy Energy Aware Routing Protocol for Wireless Sensor Networks

  • Almomani, Iman;Saadeh, Maha
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1436-1457
    • /
    • 2018
  • Secure routing services in Wireless Sensor Networks (WSNs) are essential, especially in mission critical fields such as the military and in medical applications. Additionally, they play a vital role in the current and future Internet of Things (IoT) services. Lightness and efficiency of a routing protocol are not the only requirements that guarantee success; security assurance also needs to be enforced. This paper proposes a Secure-Fuzzy Energy Aware Routing Protocol (S-FEAR) for WSNs. S-FEAR applies a security model to an existing energy efficient FEAR protocol. As part of this research, the S-FEAR protocol has been analyzed in terms of the communication and processing costs associated with building and applying this model, regardless of the security techniques used. Moreover, the Qualnet network simulator was used to implement both FEAR and S-FEAR after carefully selecting the following security techniques to achieve both authentication and data integrity: the Cipher Block Chaining-Message Authentication Code (CBC-MAC) and the Elliptic Curve Digital Signature Algorithm (ECDSA). The performance of both protocols was assessed in terms of complexity and energy consumption. The results reveal that achieving authentication and data integrity successfully excluded all attackers from the network topology regardless of the percentage of attackers. Consequently, the constructed topology is secure and thus, safe data transmission over the network is ensured. Simulation results show that using CBC-MAC for example, costs 0.00064% of network energy while ECDSA costs about 0.0091%. On the other hand, attacks cost the network about 4.7 times the cost of applying these techniques.

Distributed Matching Algorithms for Spectrum Access: A Comparative Study and Further Enhancements

  • Ali, Bakhtiar;Zamir, Nida;Ng, Soon Xin;Butt, Muhammad Fasih Uddin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권4호
    • /
    • pp.1594-1617
    • /
    • 2018
  • In this paper, we consider a spectrum access scenario which consists of two groups of users, namely Primary Users (PUs) and Secondary Users (SUs) in Cooperative Cognitive Radio Networks (CCRNs). SUs cooperatively relay PUs messages based on Amplify-and-Forward (AF) and Decode-and-Forward (DF) cooperative techniques, in exchange for accessing some of the spectrum for their secondary communications. From the literatures, we found that the Conventional Distributed Algorithm (CDA) and Pragmatic Distributed Algorithm (PDA) aim to maximize the PU sum-rate resulting in a lower sum-rate for the SU. In this contribution, we have investigated a suit of distributed matching algorithms. More specifically, we investigated SU-based CDA (CDA-SU) and SU-based PDA (PDA-SU) that maximize the SU sum-rate. We have also proposed the All User-based PDA (PDA-ALL), for maximizing the sum-rates of both PU and SU groups. A comparative study of CDA, PDA, CDA-SU, PDA-SU and PDA-ALL is conducted, and the strength of each scheme is highlighted. Different schemes may be suitable for different applications. All schemes are investigated under the idealistic scenario involving perfect coding and perfect modulation, as well as under practical scenario involving actual coding and actual modulation. Explicitly, our practical scenario considers the adaptive coded modulation based DF schemes for transmission flexibility and efficiency. More specifically, we have considered the Self-Concatenated Convolutional Code (SECCC), which exhibits low complexity, since it invokes only a single encoder and a single decoder. Furthermore, puncturing has been employed for enhancing the bandwidth efficiency of SECCC. As another enhancement, physical layer security has been applied to our system by introducing a unique Advanced Encryption Standard (AES) based puncturing to our SECCC scheme.

Snapshot-Based Offloading for Web Applications with HTML5 Canvas (HTML5 캔버스를 활용하는 웹 어플리케이션의 스냅샷 기반 연산 오프로딩)

  • Jeong, InChang;Jeong, Hyuk-Jin;Moon, Soo-Mook
    • Journal of KIISE
    • /
    • 제44권9호
    • /
    • pp.871-877
    • /
    • 2017
  • A vast amount of research has been carried out for executing compute-intensive applications on resource-constrained mobile devices. Computation offloading is a method in which heavy computations are dynamically migrated from a mobile device to a server, exploiting the powerful hardware of the server to perform complex computations. An important issue for offloading is the complexity of reconciling the execution state of applications between the server and the client. To address this issue, snapshot-based offloading has recently been proposed, which utilizes the snapshot of a web app as the portable description of the execution state. However, for web applications using the HTML5 canvas, snapshot-based offloading does not function correctly, because the snapshot cannot capture the state of the canvas. In this paper, we propose a code generation technique to save the canvas state as part of a snapshot, so that the snapshot-based offloading can be applied to web applications using the canvas.