• Title/Summary/Keyword: code calibration

Search Result 125, Processing Time 0.024 seconds

Analytical Method for Sodium Polyacrylate in Processed Food Products by Using Size-exclusion Chromatography (Size-exclusion Chromatography를 활용한 가공식품 중 폴리아크릴산나트륨 분석법 확립)

  • Jeong, Eun-Jeong;Choi, Yoo-Jeong;Lee, Gunyoung;Yun, Sang Soon;Lim, Ho Soo;Kim, MeeKyung;Kim, Yong-Suk
    • Journal of Food Hygiene and Safety
    • /
    • v.33 no.6
    • /
    • pp.466-473
    • /
    • 2018
  • An analytical method of sodium polyacrylate in processed food products was developed and monitored by using size-exclusion chromatography. GF-7M HQ column and UV/VIS detector were selected based on peak shape and linearity. Flow rate, column oven temperature, and mobile phase were selected as 0.6 mL/min, $45^{\circ}C$, and 50 mM sodium phosphate buffer of pH 9.0, respectively. Samples for analysis of sodium polyacrylate were extracted with 50 mM sodium phosphate buffer of pH 7.0 for 3 hr at $20^{\circ}C$ and 150 rpm. Analytical method validation revealed proper selectivity and calibration curve was selected in the range of 50-500 mg/L, and correlation coefficient of calibration curve was more than 0.9985. Limit of detection of sodium polyacrylate was 10.95 mg/kg and limit of quantification was 33.19 mg/kg. Accuracy and coefficient of variation for sodium polyacrylate analysis was 99.6-127.6%, 3.0-8.3% for intra-day and 94.3-121.9%, 1.3-2.6% for inter-day, respectively. Sodium polyacrylate was detected in 40 samples among monitored 125 processed food products. Detected contents were less than 0.2%, limited by the Food Additives Code. Results suggest the established size-exclusion chromatography method could be used to analyze sodium polyacrylate in processed food products.

Sensitivity Analysis of Groundwater Model Predictions Associated with Uncertainty of Boundary Conditions: A Case Study (지하수 모델의 주요 경계조건에 대한 민감도 분석 사례)

  • Na, Han-Na;Koo, Min-Ho;Cha, Jang-Hawn;Kim, Yong-Je
    • Journal of Soil and Groundwater Environment
    • /
    • v.12 no.3
    • /
    • pp.53-65
    • /
    • 2007
  • Appropriate representation of hydrologic boundaries in groundwater models is critical to the development of a reliable model. This paper examines how the model predictions are affected by the uncertainty in the conceptualization of the hydrologic boundaries including groundwater divides, streams, and the lower boundaries of the flow system. The problem is analyzed for a study area where a number of field data for model inputs were available. First, a groundwater flow model is constructed and calibrated for the area using the Visual Modflow code. Recharge rate is used for the unknown variable determined through the calibration process. Secondly, a series of sensitivity analyses are conducted to evaluate the effects of model uncertainties embedded in specifying boundary conditions for streams and groundwater divides and specifying lower boundary of the bedrock. Finally, this paper provides some guidelines and discussions on how to deal with such hydrologic boundaries in view of developing a reliable conceptual model for the groundwater flow system of Korea.

Evaluation of Partial Safety Factors for Tetrapod Armor Blocks Depending on the Shape Parameter of Extreme Wave Height Distributions (극치파고분포의 형상 모수에 따른 Tetrapod 피복블록의 부분안전계수 산정)

  • Kim, Seung-Woo;Suh, Kyung-Duck;Lee, Dong-Young;Jun, Ki-Cheon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.59-69
    • /
    • 2012
  • Probabilistic design is required to effectively consider the coastal environment of great uncertainty. However, designers who are familiar with the deterministic design method prefer a method which is similar to the existing method but is based on the probabilistic concept. Therefore, the partial safety factor method has been adopted as a new design method over the world. In Korea, Tetrapod is widely used for armoring rubble mound breakwaters. Even though the partial safety factor method developed in the United States and Europe covers Tetrapods, the limited wave and structure conditions in its development make the engineers hesitate about its use in practical breakwater design. In this study, partial safety factors for Tetrapod armor blocks have been developed by analyzing 116 breakwater cross-sections and wave conditions in 16 trade harbors and 15 coastal harbors with the FORM and optimal code calibration approach. Especially, partial safety factors have been proposed depending on the shape parameter of the Weibull extreme wave height distribution. For other types of extreme distributions, it is possible to apply the proposed partial safety factors using the relationship between skewness coefficient and shape parameter. Finally, the proposed partial safety factors have been applied to existing structures to show that they better satisfy the target reliability of the structures than previous partial safety factors.

Analysis of Moment Effect of Bridge Design Live Load KL-510 by Statistical Analysis of WIM Data of Expressway (고속도로 WIM 데이터의 통계분석을 통한 교량 설계활하중 KL-510의 모멘트 효과 분석)

  • Paik, Inyeol;Jeong, Kilhwan
    • Journal of Korean Society of Steel Construction
    • /
    • v.29 no.6
    • /
    • pp.467-477
    • /
    • 2017
  • The live load effect of KL-510 of the current Korean bridge design code is examined by comparing with that of the multiple trucks of which the weights are statistically estimated from measured traffic data as well as with those of the related live load models. The truck weight data measured on the expressway before and after overweight enforcement are used to obtain the truck weights following the same procedures in deciding the live load model of the design codes and the results are compared with the load effect of KL-510. KL-510 yields a very uniform loading effect compared with the multiple truck effects when the weights are estimated from the data which contains some of the heavy trucks over the operational weight limit. KL-510 yields consistent results with the live load of AASHTO LRFD and shows less variation than the past load model DB-24 over the span lengths considered in this study. As a result of this research, the actual truck combinations equivalent to the notional KL-510 load model are constructed and it can be applied to the evaluation of the existing bridge and the calibration of the load factor of the permit vehicle.

A New Approach for the Calculation of Neutron Dose Equivalent Conversion Coefficients for PMMA Slab Phantom (PMMA 평판형 팬텀에서의 중성자 선량당량 환산계수의 새로운 계산법)

  • Kim, Jong-Kyung;Kim, Jong-Oh
    • Journal of Radiation Protection and Research
    • /
    • v.21 no.4
    • /
    • pp.297-311
    • /
    • 1996
  • ANSI decided PMMA slab phantom as a calibration phantom and introduced a conversion coefficient calculation method for it. For photon, the conversion coefficient can be obtained by using backscatter factor and conversion coefficient of the ICRU tissue cube and backscatter factor of the PMMA slab. For neutron, however, the ANSI has not introduced any conversion coefficient calculation method for the PMMA slab. In this work, the ANSI method for the photon conversion coefficient calculation was applied to the neutron conversion coefficient calculation of the PMMA slab. Quality weighted tissue kerma of neutron was applied to calculate the backscatter factors on the ICRU cube and the PMMA slab. The dose conversion coefficient of the ICRU cube was also calculated by using MCNP code. Then, the dose conversion coefficient of the PMMA slab was calculated from two backscatter factors and the dose conversion coefficient of the ICRU cube. The discrepancies of the dose conversion coefficients of the PMMA slab and the ICRU cube were less than 10% except 1eV(20%), 1keV(17%), and 4 MeV(16%).

  • PDF

Multi-Residue Analysis of 18 Dye Residues in Animal Products by Liquid Chromatography-Tandem Mass Spectrometry

  • Park, Hyunjin;Kim, Joohye;Kang, Hui-Seung;Cho, Byung-Hoon;Oh, Jae-Ho
    • Journal of Food Hygiene and Safety
    • /
    • v.35 no.2
    • /
    • pp.109-117
    • /
    • 2020
  • This study aimed to develop an analytical method for determination of 18 dyes in livestock and fishery products by liquid chromatograph-tandem mass spectrometry (LC-MS/MS). The developed method was validated for linearity, accuracy, limit of quantifications (LOQ) and recovery based on the CODEX guideline (CAC/GL-71). Target matrices (beef, pork, chicken, egg, milk, flatfish, eel, and shrimp) were extracted using acetonitrile (containing 1% of acetic acid) and then, purified with C18 and primary secondary amine (PSA). Calibration linearity was obtained (r2>0.98) and LOQs were 0.002 mg/kg in animal products. The recoveries of dyes were ranged from 63 to 112% and relative standard deviations (RSDs, %) were less than 15%. The residues of 18 dyes were investigated in real samples (n=124) collected from retail markets in South Korea. As a result, a total of seven samples showed positive results for target analytes in fish samples. However, there was no violation according to the maximum residue limits set by the Korean Food Code. The proposed method will be used for routine analysis of dye residues in livestock and fishery products.

Migration Measurement of Volatile Organic Compounds (VOCs) from Polystyrene-made Food Containers into Distilled Water (폴리스티렌 식품용기로부터 증류수로 용출되는 휘발성유기화합물의 분석)

  • Kim, Nam-Hoon;Kim, Ae-Kyeong;Cho, Tae-Hee;Park, Kyung-Ai;Kwak, Jae-Eun;Kim, Ji-Young;Kim, Il-Young;Chae, Young-Joo;Kim, Min-Young
    • Journal of Food Hygiene and Safety
    • /
    • v.25 no.3
    • /
    • pp.203-208
    • /
    • 2010
  • In this study, the level of migration of 5 kinds of volatile organic compounds (VOCs) (toluene, styrene, ethylbenzene, isopropylbenzene and n-propylbenzene) into distilled water from polystyrene-made food containers was measured using Purge&Trap combined with GC/FID. The contents of the VOCs which have regulatory limits in Korea food code only for material specification were determined under three exposure conditions which were 30 min at $60^{\circ}C$, 30 min at $95^{\circ}C$ and actual situation of instant noodle intake. The calibration curve of 5 compounds showed good linearity ($^r2$ = 0.9976~0.9995) within the concentration range of 1~50 ng/mL. The limit of detection (LOD) and limit of quantification (LOQ) were validated at range of 0.041~0.092 and 0.135~0.304 ng/mL, respectively. The average migration contents of 5 compounds were below 5 ng/mL except for styrene. The average contents of styrene were highly detected at $95^{\circ}C$ for 30 min exposure (52.71 ng/mL). Under actual condition at instant noodle intake, the average contents of styrene was 17.23 ng/mL. The results demonstrated that the migration rate of VOCs was related to storage temperature and time.

Approximate Reliability Analysis Model for R.C. Bridge Superstructures based on Systems Reliability Methods (체계신뢰성(體系信賴性) 방법(方法)에 기초(基礎)한 R.C. 도로교(道路橋) 상부구조(上部構造)의 근사적(近似的) 신뢰성해석(信賴性解析) 모형(模型))

  • Cho, Hyo Nam;Koo, Bon Sung
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.7 no.2
    • /
    • pp.79-88
    • /
    • 1987
  • This study is intended to propose a system reliability analysis model for R.C. bridge superstructures based on the systems reliability theory. Approximately assuming that the ultimate capacity of the superstructures is reached, when two adjacent girders fail subsequently, a practical system reliability model is proposed, which is based on a point estimate for Level II parallel-series system modelling. The sensitivity analysis of system reliabilities for the variation of the coefficients of correlations between the failure modes is performed by applying the proposed model for R.C. T beam bridges. It is observed that the point estimate method for the proposed model corresponds to the average value of the Ditlevsen's bound, and the system reliability index, ${\beta}_s$, varies quite sensitively according to the variation of the cofficients of correlations. Systems reliabilities of a few existing T beam bridges are analyzed by applying the proposed practical system reliability method of this study, and, in addition, the preferable direction of the development of the reliability-based code calibration using the system target reliability index concept are suggested.

  • PDF

Radiological Characterization of the High-sensitivity MOSFET Dosimeter (고감도 MOSFET 선량계 방사선학적 특성 연구)

  • Cho Sung Koo;Kim Chan-Hyeong
    • Progress in Medical Physics
    • /
    • v.15 no.4
    • /
    • pp.215-219
    • /
    • 2004
  • Due to their excellence for the high-energy therapy range of photon beams, researchers show increasing interest in applying MOSFET dosimeters to low- and medium-energy applications. In this energy range, however, MOSFET dosimeter is complicated by the fact that the interaction probability of photons shows significant dependence on the atomic number, Z, due to photoelectric effect. The objective of this study is to develop a very detailed 3-dimensional Monte Carlo simulation model of a MOSFET dosimeter for radiological characterizations and calibrations. The sensitive volume of the High-Sensitivity MOSFET dosimeter is very thin (1 ${\mu}{\textrm}{m}$) and the standard MCNP tallies do not accurately determine absorbed dose to the sensitive volume. Therefore, we need to score the energy deposition directly from electrons. The developed model was then used to study various radiological characteristics of the MOSFET dosimeter. the energy dependence was quantified for the energy range 15 keV to 6 MeV; finding maximum dependence of 6.6 at about 40 keV. A commercial computer code, Sabrina, was used to read the particle track information from an MCNP simulation and count the tracks of simulated electrons. The MOSFET dosimeter estimated the calibration factor by 1.16 when the dosimeter was at 15 cm depth in tissue phantom for 662 keV incident photons. Our results showed that the MOSFET dosimeter estimated by 1.11 for 1.25 MeV photons for the same condition.

  • PDF

Contact forces generated by fallen debris

  • Sun, Jing;Lam, Nelson;Zhang, Lihai;Gad, Emad;Ruan, Dong
    • Structural Engineering and Mechanics
    • /
    • v.50 no.5
    • /
    • pp.589-603
    • /
    • 2014
  • Expressions for determining the value of the impact force as reported in the literature and incorporated into code provisions are essentially quasi-static forces for emulating deflection. Quasi-static forces are not to be confused with contact force which is generated in the vicinity of the point of contact between the impactor and target, and contact force is responsible for damage featuring perforation and denting. The distinction between the two types of forces in the context of impact actions is not widely understood and few guidelines have been developed for their estimation. The value of the contact force can be many times higher than that of the quasi-static force and lasts for a matter of a few milli-seconds whereas the deflection of the target can evolve over a much longer time span. The stiffer the impactor the shorter the period of time to deliver the impulsive action onto the target and consequently the higher the peak value of the contact force. This phenomenon is not taken into account by any contemporary codified method of modelling impact actions which are mostly based on the considerations of momentum and energy principles. Computer software such as LS-DYNA has the capability of predicting contact force but the dynamic stiffness parameters of the impactor material which is required for input into the program has not been documented for debris materials. The alternative, direct, approach for an accurate evaluation of the damage potential of an impact scenario is by physical experimentation. However, it can be difficult to extrapolate observations from laboratory testings to behaviour in real scenarios when the underlying principles have not been established. Contact force is also difficult to measure. Thus, the amount of useful information that can be retrieved from isolated impact experiments to guide design and to quantify risk is very limited. In this paper, practical methods for estimating the amount of contact force that can be generated by the impact of a fallen debris object are introduced along with the governing principles. An experimental-calibration procedure forming part of the assessment procedure has also been verified.