• Title/Summary/Keyword: coconut Shell Carbon

Search Result 38, Processing Time 0.021 seconds

Studies on Pore Characteristics of Several Adsorbents (담배용 흡착제들의 동공 특성에 관한 연구)

  • Rhim, Kwang-Soo;Chung, Yong-Soon;Lee, Young-Taek
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.2
    • /
    • pp.181-190
    • /
    • 1994
  • Various active carbons were made from plant sources of coconut shell, pine tree, oak tree and lignite coal. Pore characteristics of these adsorbents were investigated. 1, With increasing activation time, specific surface area and pore volume increased, but the development of micropores was limited at a certain level. The average pore diameter, by BET, of coconut active carbon was 15.5-21.8$\AA$ and that of lignite carbon was 15.6-31.3$\AA$. The pore diameters of silica-gel, sepiolite and zeolite was 30.9$\AA$, 58.6$\AA$ and 55.7$\AA$, respectively. 2. The Horvath - Kawazoe micropore diameter of coconut shell active carbon was under 10.5$\AA$ and that of the other active carbon was under 20.9$\AA$ but silica-gel 33$\AA$, sepiolite 103 $\AA$ and zeolite was unexpectedly large to be 175$\AA$. From the difference between BET micropore diameter and Howath - Kawazoe diameter, it could be said that silica - gel has comparatively uniform pore diameter but sepiolite and zeolite have very uneven diameter. 3. Total pore volume of coconut shell active carbon was 0.27-1.04 cm3/g but that of the other active carbon, 0.23-0.62 cm3/g, was much lower than that of coconut shell active carbon. Hydrophilic adsorbent silica - gel and sepiolite showed big difference in specific surface area, but pore volumes of these were 0.47 and 0.56 cm3/g showing similar value and micropore volumes of these were, respectively, 0.06 cm3/g and 0.04 cm3/g. Total pore volume of zeolite was 0.1 cm3/g and that of micropore was only 0.02 cm3/g.

  • PDF

Adsorption of Trichloroethylene in Water by Coconut Carbon and Coconut Activated Carbon (야자껍질 탄화탄과 야자껍질 활성탄에 의한 수중 Trichloroethylene의 흡착에 관한 연구)

  • 김영규;정문호
    • Journal of Environmental Health Sciences
    • /
    • v.19 no.4
    • /
    • pp.25-32
    • /
    • 1993
  • Granular activated carbon is commonly used in fixed-bed adsorbers to remove organic chemicals. In this experiment organic chemical solutions were prepared by adding the reagent grade organic chemical to distilled water. Isotherm adsorption tests of volatile organic chemicals were conducted using bottle-point technique and column test. Organic chemicals after passing through the column were extracted with hexane and analyzed with gas chromatography (Hewlett-Packard 5890) to check the adsorption capacity and breakthrough curve. The result were as follows: 1. The BET surface area of coconut activated carbon was 658~1,010 m$^2$/g where as coconut shell carbon was 6.6 m$^2$/g. Coconut activated carbon increased the BET surface area and adsorption capacity in bottle-point isotherm. 2. The adsorption capacity of coconut activated carbon for trichloroethylene (TCE) was reduced in the presence of humic substance. 3. A decrease in particle size of activated carbon resulted in higher adsorption capacity and lower intraparticle diffusion coefficient. It is reflected not only as a decrease in Freudlich adsorption capacity value (K) but also as an increase in Freudlich exponenent value (1/n).

  • PDF

Enhanced Degradation of Quinoline by Immobilized Bacillus Brevis (고정화된 Bacillus Brevis에 의한 큐놀린 분해의 증가)

  • S., Balasubramaniyan;M., Swaminathan
    • Journal of the Korean Chemical Society
    • /
    • v.51 no.2
    • /
    • pp.154-159
    • /
    • 2007
  • Biodegradation of Quinoline by free and immobilized Bacillus brevis has been investigated. The rate of quinoline degradation by immobilized Bacillus brevis on coconut shell carbon is faster than the rate by the microorganism immobilized on foam pieces and free cells. A complete removal of 100 ppm of Quinoline in the sample was achieved at a hydraulic retention time of 20 hours with the biocatalyst prepared by immobilizing Bacillus brevis onto coconut shell carbon. The biocatalyst had a reasonable shelf life and desirable recycle capacity.

Preparation of Hybrid Carbon from Conducting Polymer-Coconut Shell Composites and Their Electrochemical Properties (코코넛 껍질-전도성 고분자 복합소재로부터 탄소 소재의 제조 및 전기화학적 특성 분석)

  • Jeongeun Park;Subin Shin;Yewon Yoon;Jiwon Park;Joonwon Bae
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.37-41
    • /
    • 2024
  • The coconut shell, a by-product of popular tropical fruit, is a promising material due to its interesting properties. The preparation of the composite consisted of conducting polymer and coconut shell using a simple wet method, and subsequent carbonization produced a carbonized material under a controlled carbonization cycle. In addition, its electrochemical performance as an anode in lithium-ion batteries was also investigated. The appearance of the obtained materials was observed with a scanning electron microscope. The internal structure of the carbon derived from the coconut shell under a controlled heating profile was analyzed using a Raman spectroscope. A simple electrical measurement based on the ohmic relationship showed that the carbonized product has a significant electrical conductivity. The application of the carbonized product as anode in a lithium-ion battery was tested using half-cell charge/discharge experiments. This article provides important information for future research regarding the recycling of fruit shells and food waste.

Adsorption capability of activated carbon synthesized from coconut shell

  • Islam, Md Shariful;Ang, Bee Chin;Gharehkhani, Samira;Afifi, Amalina Binti Muhammad
    • Carbon letters
    • /
    • v.20
    • /
    • pp.1-9
    • /
    • 2016
  • Activated carbon was synthesized from coconut shells. The Brunauer, Emmett and Teller surface area of the synthesized activated carbon was found to be 1640 m2/g with a pore volume of 1.032 cm3/g. The average pore diameter of the activated carbon was found to be 2.52 nm. By applying the size-strain plot method to the X-ray diffraction data, the crystallite size and the crystal strain was determined to be 42.46 nm and 0.000489897, respectively, which indicate a perfect crystallite structure. The field emission scanning electron microscopy image showed the presence of well-developed pores on the surface of the activated carbon. The presence of important functional groups was shown by the Fourier transform infrared spectroscopy spectrum. The adsorption of methyl orange onto the activated carbon reached 100% after 12 min. Kinetic analysis indicated that the adsorption of methyl orange solution by the activated carbon followed a pseudo-second-order kinetic mechanism (R2 > 0.995). Therefore, the results show that the produced activated carbon can be used as a proper adsorbent for dye containing effluents.

Performance of EDLC Electrodes Prepared by Post Treatments of Commercial Activated Carbon (상업용 활성탄의 후처리에 의하여 제조된 전기이중층 커패시터용 전극재의 특성)

  • Wu, Jing-Yu;Hong, Ik-Pyo;Kim, Myung-Soo
    • Journal of the Korean Applied Science and Technology
    • /
    • v.30 no.2
    • /
    • pp.362-370
    • /
    • 2013
  • The coconut shell based activated carbon was applied for EDLC (electric double layer capacitor) electrode with the post treatments. The electrochemical properties were evaluated with a coin cell using the activated carbon as electrode. The initial gravimetric and volumetric capacitance of the coconut shell based activated carbon electrode s were 66 F/g and 39 F/cc, and these values decreased to 54 F/g and 32 F/cc after 100 cycles, respectively showing 82% of charge-discharge efficiency. The properties of CV graph with the commercial activated carbon electrodes showed the serious polarization as the result of additional reaction between electrolyte and impurities of the electrode materials. In order to remove impurities efficiently, the commercial activated carbon was treated by alkali and acid solutions consecutively, and then heat treated to control the pore size distribution and the content of surface functional groups. The surface functional groups decreased with the increased heat temperature and the specific capacitance increased with the decreased surface functional groups. The initial capacitance of coconut shell based activated carbon elec trode which was treated with NaOH and HNO3, and then heat treated at $800^{\circ}C$ was 44 F/cc, and the value turned out to be 42 F/cc after 100 cycles, showing over 95% of charge-discharge efficiency.

Electrolytic Treatment of Heavy Metallic ion Wastewater by BPBE Cell (BPBE Cell에 의한 중금속함유폐수처리)

  • 장철현;박재주;박승조;김수생
    • Environmental Analysis Health and Toxicology
    • /
    • v.4 no.3_4
    • /
    • pp.29-59
    • /
    • 1989
  • For the purpose of electrolytic treatment of wastewater containing various heavy metals, the BPBE Cell of batch and continuous type was considered and experimented. Some results from this study were summarized as follows: 1. When the artificial wastewater containing 500 mg/l of the concentration of various heavy metallic ion was electrolyzed in BPBE Cell of batch type, the removal efficicency was over 95% in cadmiun (II), lead (II), chromium (Ⅵ) and over 85% in copper (II), chromium (III). 2, As granular activated carbon packed in BPBE Cell, coconut shell was superior to lignite and the removal efficiency was the highest when the activated carbon was 4/6 mesh, the voltage was 20V. 3. When the heavy metallic ion in wastewater was electrolyzed in BPBE Cell of continuous type, about 1,000mg of heavy metal per 1kg of coconut sell could be removed. 4. The treatment method of heavy metallic ion in wastewater by BPBE Cell cost less than in the former chemical treatment method and the coconut shell packed in BPBE Cell could be regenerated by chemical method.

  • PDF

Physical Properties of Carbon Prepared from a Coconut Shell by Steam Activation and Chemical Activation and the Influence of Prepared and Activated Carbon on the Delivery of Mainstream Smoke

  • Ko, Dong-Kyun;Shin, Chang-Ho;Jang, Hang-Hyun;Lee, Young-Taeg;Rhee, Moon-Soo
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.30 no.1
    • /
    • pp.8-13
    • /
    • 2008
  • Several activated carbon in different specific surface area was prepared by steam and chemical activation of coconut shell. Products were characterized by BET ($N_2$) at 77K, and probed to be highly specific surface area of $1580m^2/g$ and pore volume that had increased with activating conditions. And also we have analyzed the adsorption efficiency of vapor phase components in cigarette mainstream smoke in order to evaluate the relationship between thesmoke components and the physicochemical properties of activated carbons. As a result of this study, the delivery of mainstream smoke was directly affected by the specific surface area and the pore size of activated carbon. The activated carbon prepared by steam activation exhibited better adsorption efficiency on the vapor phase components in mainstream smoke compared with activated carbon prepared by $ZnCl_2$, due to the higher micro-pore area of 66%. But the adsorption efficiency of semi-volatile matters such as phenolic components in a main stream smoke by the activated mesoporous carbon prepared by $ZnCl_2$ is more effective. From the these results, we can conclude that specific surface area by the micropore area increased the adsorption efficiency of activated carbon on vapour phase components, but semi-volatiles or particulate matter was affected by the ratio of mesopore area in total specific surface area.

Adsorption Characteristics of Waste-Paint Activated Carbon (廢 페인트 活性炭의 吸着特性)

  • 박정호;박승조
    • Resources Recycling
    • /
    • v.9 no.6
    • /
    • pp.9-14
    • /
    • 2000
  • Comparing the adsorption characteristics of coconut shell activated carbon (CSAC) and waste paint activated carbon (WPAC), Freundlich adsorption isotherms of alkylbenzene sulfonate (ABS) obtained from the secondary treatment water of H company and effluent of D company were estimated q=23.12 $C^{0.42}$ , q=18.32 $C^{0.38}$ with WPAC and $q=36.76C^{1.37}$ /, q=26.67 $C^{0.42}$ with CSAC respectively. In the case of H company, breakthrough time of the ABS using CSAC by continuous experiment was estimated 680 minute md that of WPAC was 610 minute. In the case of D company effluent, CSAC was estimated 720 minute, and that of WPAC was estimated 640 minute to reach the breakthrough. From the above results, it is possible to replace the coco-nut shell activated carbon with wasted paint activated carbon.

  • PDF

Preparation and Adsorption-photocatalytic Activity Evaluation of TiO2-Coconut Shell Powder Composite (TCSPC) (TiO2-Coconut Shell Powder Carbon 복합체 (TCSPC) 제조 및 흡착 광촉매 산화 활성 평가)

  • Lee, Min Hee;Kim, Jong Kyu
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.37 no.6
    • /
    • pp.357-362
    • /
    • 2015
  • A novel $TiO_2$-Coconut Shell Powder Composite (TCSPS), prepared by the controlled sol-gel method with subsequent heat treatment, was evaluated as an innovative photocatalytic absorbent for the removal of methylene blue. Optimal preparation conditions of TCSPC were obtained by a response surface methodology and a central composite design model. As compared with the results obtained from one-factor-at-a-time experiments, the values were approximated to the nearest condition of these values and the following experimental parameters were set as the optimum : $600^{\circ}C$ calcination temperature and 20 g of coconut shell powder loading amount.