Browse > Article
http://dx.doi.org/10.5714/CL.2016.20.001

Adsorption capability of activated carbon synthesized from coconut shell  

Islam, Md Shariful (Center of Advanced Materials, Department of Mechanical Engineering, University of Malaya)
Ang, Bee Chin (Center of Advanced Materials, Department of Mechanical Engineering, University of Malaya)
Gharehkhani, Samira (Department of Mechanical Engineering, University of Malaya)
Afifi, Amalina Binti Muhammad (Center of Advanced Materials, Department of Mechanical Engineering, University of Malaya)
Publication Information
Carbon letters / v.20, no., 2016 , pp. 1-9 More about this Journal
Abstract
Activated carbon was synthesized from coconut shells. The Brunauer, Emmett and Teller surface area of the synthesized activated carbon was found to be 1640 m2/g with a pore volume of 1.032 cm3/g. The average pore diameter of the activated carbon was found to be 2.52 nm. By applying the size-strain plot method to the X-ray diffraction data, the crystallite size and the crystal strain was determined to be 42.46 nm and 0.000489897, respectively, which indicate a perfect crystallite structure. The field emission scanning electron microscopy image showed the presence of well-developed pores on the surface of the activated carbon. The presence of important functional groups was shown by the Fourier transform infrared spectroscopy spectrum. The adsorption of methyl orange onto the activated carbon reached 100% after 12 min. Kinetic analysis indicated that the adsorption of methyl orange solution by the activated carbon followed a pseudo-second-order kinetic mechanism (R2 > 0.995). Therefore, the results show that the produced activated carbon can be used as a proper adsorbent for dye containing effluents.
Keywords
coconut shell; activated carbon; dye adsorption; size-strain plot; specific surface area;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Abbas M, Kaddour S, Trari M. Kinetic and equilibrium studies of cobalt adsorption on apricot stone activated carbon. J Ind Eng Chem, 20, 745 (2014). http://doi.org/10.1016/j.jiec.2013.06.030.   DOI
2 Shin S, Jang J, Yoon SH, Mochida I. A study on the effect of heat treatment on functional groups of pitch based activated carbon fiber using FTIR. Carbon, 35, 1739 (1997). http://doi.org/10.1016/s0008-6223(97)00132-2.   DOI
3 Meldrum BJ, Rochester CH. In situ infrared study of the modification of the surface of activated carbon by ammonia, water and hydrogen. J Chem Soc Faraday Trans, 86, 1881 (1990). http://doi.org/10.1039/ft9908601881.   DOI
4 Terzyk AP. The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro: Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH. Colloids Surf A Physicochem Eng Asp, 177, 23 (2001). http://doi.org/10.1016/s0927-7757(00)00594-x.   DOI
5 Guo J, Lua AC. Textural and chemical properties of adsorbent prepared from palm shell by phosphoric acid activation. Mater Chem Phys, 80, 114 (2003). http://doi.org/10.1016/s0254-0584(02)00383-8.   DOI
6 Lua AC, Yang T. Effect of activation temperature on the textural and chemical properties of potassium hydroxide activated carbon prepared from pistachio-nut shell. J Colloid Interface Sci, 274, 594 (2004). http://doi.org/10.1016/j.jcis.2003.10.001.   DOI
7 Zahoor A, Christy M, Hwang YJ, Lim YR, Kim P, Nahm KS. Improved electrocatalytic activity of carbon materials by nitrogen doping. Appl Catal B Environ, 147, 633 (2014). http://doi.org/10.1016/j.apcatb.2013.09.043.   DOI
8 An D, Guo Y, Zou B, Zhu Y, Wang Z. A study on the consecutive preparation of silica powders and active carbon from rice husk ash. Biomass Bioenergy, 35, 1227 (2001). http://doi.org/10.1016/j.biombioe.2010.12.014.   DOI
9 Jung MW, Ahn KH, Lee Y, Kim KP, Rhee JS, Park JT, Paeng KJ. Adsorption characteristics of phenol and chlorophenols on granular activated carbons (GAC). Microchem J, 70, 123 (2001). http://doi.org/10.1016/s0026-265x(01)00109-6.   DOI
10 Lagergren S. About the theory of so-called adsorption of soluble substances. Kungliga Svenska Vetenskapsakademiens Handlingar, 24, 1 (1898).
11 Ho YS, McKay G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res, 34, 735 (2000). http://doi.org/10.1016/s0043-1354(99)00232-8.   DOI
12 Pokhrel D, Viraraghavan T. Treatment of pulp and paper mill wastewater: a review. Sci Total Environ, 333, 37 (2004). http://doi.org/10.1016/j.scitotenv.2004.05.017.   DOI
13 Weber WJ, Morris JC. Kinetics of adsorption on carbon from solution. J Sanit Eng Div, 89, 31 (1963).
14 Blanchard G, Maunaye M, Martin G. Removal of heavy metals from waters by means of natural zeolites. Water Res, 18, 1501 (1984). http://doi.org/10.1016/0043-1354(84)90124-6.   DOI
15 Dong Y, Lin H, Qu F. Synthesis of ferromagnetic ordered mesoporous carbons for bulky dye molecules adsorption. Chem Eng J, 193-194, 169, (2012). http://doi.org/10.1016/j.cej.2012.04.024.   DOI
16 Zhao D, Zhang W, Chen C, Wang X. Adsorption of methyl orange dye onto multiwalled carbon nanotubes. Procedia Environ Sci, 18, 890 (2013). http://doi.org/10.1016/j.proenv.2013.04.120.   DOI
17 Mittal A, Kurup L, Mittal J. Freundlich and Langmuir adsorption isotherms and kinetics for the removal of Tartrazine from aqueous solutions using hen feathers. J Hazard Mater, 146, 243 (2007). http://doi.org/10.1016/j.jhazmat.2006.12.012.   DOI
18 Huo Y, Xie Z, Wang X, Li H, Hoang M, Caruso RA. Methyl orange removal by combined visible-light photocatalysis and membrane distillation. Dyes Pigm, 98, 106 (2013). http://doi.org/10.1016/j.dyepig.2013.02.009.   DOI
19 Saharan VK, Badve MP, Pandit AB. Degradation of Reactive Red 120 dye using hydrodynamic cavitation. Chem Eng J, 178, 100 (2011). http://doi.org/10.1016/j.cej.2011.10.018.   DOI
20 Zhou L, Gao C, Xu W. Magnetic dendritic materials for highly efficient adsorption of dyes and drugs. ACS Appl Mater Interfaces, 2, 1483 (2010). http://doi.org/10.1021/am100114f.   DOI
21 Tian Y, Liu P, Wang X, Lin H. Adsorption of malachite green from aqueous solutions onto ordered mesoporous carbons. Chem Eng J, 171, 1263 (2011). http://doi.org/10.1016/j.cej.2011.05.040.   DOI
22 O’Neill C, Hawkes FR, Hawkes DL, Lourenço ND, Pinheiro HM, Delée W. Colour in textile effluents–sources, measurement, discharge consents and simulation: a review. J Chem Technol Biotechnol, 74, 1009 (1999). http://doi.org/10.1002/(sici)1097-4660(199911)74:11<1009::aid-jctb153>3.0.co;2-n.   DOI
23 Choy KKH, Porter JF, Mckay G. Intraparticle diffusion in single and multicomponent acid dye adsorption from wastewater onto carbon. Chem Eng J, 103, 133 (2004). http://doi.org/10.1016/j.cej.2004.05.012.   DOI
24 Mahmoodian H, Moradi O, Shariatzadeha B, Salehf TA, Tyagi I, Maity A, Asif M, Gupta VK. Enhanced removal of methyl orange from aqueous solutions by poly HEMA–chitosan-MWCNT nanocomposite. J Mol Liq, 202, 189 (2015). http://doi.org/10.1016/j.molliq.2014.10.040.   DOI
25 Rao AV, Jain BL, Gupta IC. Impact of textile industrial effluents on agricultural land. Indian J Environ Health, 35, 132 (1993).
26 Hosseini S, Khan MA, Malekbala MS, Cheah W, Choong TSY. Carbon coated monolith, a mesoporous material for the removal of methyl orange from aqueous phase: adsorption and desorption studies. Chem Eng J, 171, 1124 (2011). http://doi.org/10.1016/j.cej.2011.05.010.   DOI
27 Xu YY, Zhou M, Geng HJ, Hao HJ, Ou QQ, Qi SD, Chen HL, Chen XG. A simplified method for synthesis of Fe3O4@PAA nanoparticles and its application for the removal of basic dyes. Appl Surf Sci, 258, 3897 (2012). http://doi.org/10.1016/j.apsusc.2011.12.054.   DOI
28 Robinson T, McMullan G, Marchant R, Nigam P. Remediation of dyes in textile effluent: a critical review on current treatment technologies with a proposed alternative. Bioresour Technol, 77, 247 (2001). http://doi.org/10.1016/s0960-8524(00)00080-8.   DOI
29 Mohammadi N, Khani H, Gupta VK, Amereh E, Agarwal S. Adsorption process of methyl orange dye onto mesoporous carbon material–kinetic and thermodynamic studies. J Colloid Interface Sci, 362, 457 (2011). http://doi.org/10.1016/j.jcis.2011.06.067.   DOI
30 Rai HS, Bhattacharyya MS, Singh J, Bansal TK, Vats P, Banerjee UC. Removal of dyes from the effluent of textile and dyestuff manufacturing industry: a review of emerging techniques with reference to biological treatment. Crit Rev Environ Sci Technol, 35, 219 (2005). http://doi.org/10.1080/10643380590917932.   DOI
31 Arshadi M, SalimiVahid F, Salvacion JWL, Soleymanzadeh M. Adsorption studies of methyl orange on an immobilized Mnnanoparticle: kinetic and thermodynamic. RSC Adv, 4, 16005 (2014). http://doi.org/10.1039/c3ra47756h.   DOI
32 Zhu HY, Jiang R, Xiao L, Zeng GM. Preparation, characterization, adsorption kinetics and thermodynamics of novel magnetic chitosan enwrapping nanosized γ-Fe2O3 and multi-walled carbon nanotubes with enhanced adsorption properties for methyl orange. Bioresour Technol, 101, 5063 (2010). http://doi.org/10.1016/j.biortech.2010.01.107.   DOI
33 Gu Z, Deng B, Yang J. Synthesis and evaluation of iron-containing ordered mesoporous carbon (FeOMC) for arsenic adsorption. Microporous Mesoporous Mater, 102, 265 (2007). http://doi.org/10.1016/j.micromeso.2007.01.011.   DOI
34 Zhang P, An Q, Guo J, Wang CC. Synthesis of mesoporous magnetic Co-NPs/carbon nanocomposites and their adsorption property for methyl orange from aqueous solution. J Colloid Interface Sci, 389, 10 (2013). http://doi.org/10.1016/j.jcis.2012.08.022.   DOI
35 Cheah W, Hosseini S, Khan MA, Chuah TG, Choong TSA. Acid modified carbon coated monolith for methyl orange adsorption. Chem Eng J, 215, 747 (2013). http://doi.org/10.1016/j.cej.2012.07.004.   DOI
36 Huang R, Liu Q, Huo J, Yang B. Adsorption of methyl orange onto protonated cross-linked chitosan. Arabian J Chem, Available Online: May 30 (2013). http://doi.org/10.1016/j.arabjc.2013.05.017.   DOI
37 Nejad NF, Shams E, Amini MK, Bennett JC. Synthesis of magnetic mesoporous carbon and its application for adsorption of dibenzothiophene. Fuel Process Technol, 106, 376 (2013). http://doi.org/10.1016/j.fuproc.2012.09.002.   DOI
38 Valix M, Cheung WH, McKay G. Roles of the textural and surface chemical properties of activated carbon in the adsorption of acid blue dye. Langmuir, 22, 4574 (2006). http://doi.org/10.1021/la051711j.   DOI
39 Goscianska J, Olejnik A, Pietrzak R. Comparison of ordered mesoporous materials sorption properties towards amino acids. Adsorption, 19, 581 (2013). http://doi.org/10.1007/s10450-013-9481-z.   DOI
40 Mittal A, Malviya A, Kaur D, Mittal J, Kurup L. Studies on the adsorption kinetics and isotherms for the removal and recovery of methyl orange from wastewaters using waste materials. J Hazard Mater, 148, 229 (2007). http://doi.org/10.1016/j.jhazmat.2007.02.028.   DOI
41 Wu YH, Yu Q, Xu HD, Liu NY, Sun MZ, Zhu J. Adsorption behavior and kinetics of methyl orange in water on activated carbon. Adv Mater Res, 549, 318 (2012). http://doi.org/10.4028/www.scientific.net/amr.549.318   DOI
42 Hesas RH, Arami-Niya A, Daud WMAW, Sahu JN. Preparation and characterization of activated carbon from apple waste by microwave-assisted phosphoric acid activation: application in methylene blue adsorption. BioResources, 8, 2950 (2013). http://doi.org/10.15376/biores.8.2.2950-2966.   DOI
43 Pal J, Deb MK, Deshmukh DK, Verma D. Removal of methyl orange by activated carbon modified by silver nanoparticles. Appl Water Sci, 3, 367 (2013). http://doi.org/10.1007/s13201-013-0087-0.   DOI
44 Qiu M, Xiong S, Wang G, Xu J, Luo P, Ren S, Wang Z. Kinetic for adsorption of dye methyl orange by the modified activated carbon from rice husk. Adv J Food Sci Technol, 9, 140 (2015). http://doi.org/10.19026/ajfst.9.1949.   DOI
45 Sarici-Ozdemir C. Adsorption and desorption kinetics behaviour of methylene blue onto activated carbon. Physicochem Probl Miner Process, 48, 441 (2012). http://dx.doi.org/10.5277/ppmp120210.   DOI
46 Fang J, Wang X, Lin T. Functional Applications of Electrospun Nanofibers. In: Lin T, ed. Nanofibers: Production, Properties and Functional Applications, Intec-Open Access Publisher, Rijeka, 287 (2011). http://doi.org/10.5772/24998   DOI
47 Zak AK, Majid WHA, Abrishami ME, Yousefi R. X-ray analysis of ZnO nanoparticles by Williamson–Hall and size–strain plot methods. Solid State Sci, 13, 251 (2011). http://doi.org/10.1016/j.solidstatesciences.2010.11.024.   DOI
48 Monash P, Pugazhenthi G. Adsorption of crystal violet dye from aqueous solution using mesoporous materials synthesized at room temperature. Adsorption, 15, 390 (2009). http://doi.org/10.1007/s10450-009-9156-y.   DOI
49 Das B, Mondal NK, Roy P, Chattaraj S. Equilibrium, kinetic and thermodynamic study on chromium (VI) removal from aqueous solution using Pistia stratiotes biomass. Chem Sci Trans, 2, 85 (2013). http://doi.org/10.7598/cst2013.318.   DOI
50 Bidhendi ME, Bidhendi GRN, Mehrdadi N, Rashedi H. Modified mesoporous silica (SBA–15) with trithiane as a new effective adsorbent for mercury ions removal from aqueous environment. J Environ Health Sci Eng, 12, 1 (2014). http://doi.org/10.1186/2052-336x-12-100.   DOI
51 Deng H, Zhang G, Xu X, Tao G, Dai J. Optimization of preparation of activated carbon from cotton stalk by microwave assisted phosphoric acid-chemical activation. J Hazard Mater, 182, 217 (2010). http://doi.org/10.1016/j.jhazmat.2010.06.018.   DOI
52 Lahaye J, Ehrburger P. Fundamental Issues in Control of Carbon Gasification Reactivity (Vol. 192), Springer Science & Business Media, New York (1991). http://doi.org/10.1007/978-94-011-3310-4.   DOI
53 Rouquerol J, Rouquerol F, Llewellyn PL, Maurin G, Sing KSW. Adsorption by Powders and Porous Solids: Principles, Methodology and Applications, Academic Press, Amsterdam (2013).
54 Guo L, Li G, Liu J, Meng Y, Tang Y. Adsorptive decolorization of methylene blue by crosslinked porous starch. Carbohydr Polym, 93, 374 (2013). http://doi.org/10.1016/j.carbpol.2012.12.019.   DOI
55 Qu D. Studies of the activated carbons used in double-layer supercapacitors. J Power Sources, 109, 403 (2002). http://doi.org/10.1016/s0378-7753(02)00108-8.   DOI
56 Choi JS, Kim TH, Choo KY, Sung JS, Saidutta MB, Ryu SO, Song SD, Ramachandra B, Rhee YW. Direct synthesis of phenol from benzene on iron-impregnated activated carbon catalysts. Appl Catal A Gen, 290, 1 (2005). http://doi.org/10.1016/j.apcata.2005.04.060.   DOI
57 Liu Y, Watanasiri S. Representation of liquid-liquid equilibrium of mixed-solvent electrolyte systems using the extended electrolyte NRTL model. Fluid Phase Equilib, 116, 193 (1996). ttps://doi.org/10.1016/0378-3812(95)02887-0.   DOI
58 Deng H, Li G, Yang H, Tang J, Tang J. Preparation of activated carbons from cotton stalk by microwave assisted KOH and K2CO3 activation. Chem Eng J, 163, 373 (2010). http://doi.org/10.1016/j.cej.2010.08.019.   DOI
59 Li X, Zuo Y, Zhang Y, Fu Y, Guo Q. In situ preparation of K2CO3 supported Kraft lignin activated carbon as solid base catalyst for biodiesel production. Fuel, 113, 435 (2013). http://doi.org/10.1016/j.fuel.2013.06.008.   DOI
60 Yang T, Lua AC. Textural and chemical properties of zinc chloride activated carbons prepared from pistachio-nut shells. Mater Chem Phys, 100, 438 (2006). http://doi.org/10.1016/j.matchemphys.2006.01.039.   DOI
61 Fengel D. Characterization of cellulose by deconvoluting the OH valency range in FTIR spectra. Holzforschung, 46, 283 (1992). http://doi.org/10.1515/hfsg.1992.46.4.283.   DOI
62 Zawadzki J. Infrared-spectroscopy in surface-chemistry of carbons. Chem Phys Carbon, 21, 147 (1989).
63 Fanning PE, Vannice MA. A DRIFTS study of the formation of surface groups on carbon by oxidation. Carbon, 31, 721 (1993). http://doi.org/10.1016/0008-6223(93)90009-y.   DOI
64 Puziy AM, Poddubnaya OI, Martínez-Alonso A, Suárez-García F, Tascón JMD. Synthetic carbons activated with phosphoric acid: I. surface chemistry and ion binding properties. Carbon, 40, 1493 (2002). http://doi.org/10.1016/s0008-6223(01)00317-7.   DOI
65 Ivanova BB, Arnaudov MG, Bontchev PR. Linear-dichroic infrared spectral analysis of Cu(I)–homocysteine complex. Spectrochim Acta A Mol Biomol Spectrosc, 60, 855 (2004). http://doi.org/10.1016/s1386-1425(03)00310-x.   DOI