DOI QR코드

DOI QR Code

Performance of EDLC Electrodes Prepared by Post Treatments of Commercial Activated Carbon

상업용 활성탄의 후처리에 의하여 제조된 전기이중층 커패시터용 전극재의 특성

  • 우징유 (포항산업과학연구원 탄소재료연구실) ;
  • 홍익표 (포항산업과학연구원 탄소재료연구실) ;
  • 김명수 (명지대학교 화학공학과)
  • Received : 2013.05.02
  • Accepted : 2013.06.28
  • Published : 2013.06.30

Abstract

The coconut shell based activated carbon was applied for EDLC (electric double layer capacitor) electrode with the post treatments. The electrochemical properties were evaluated with a coin cell using the activated carbon as electrode. The initial gravimetric and volumetric capacitance of the coconut shell based activated carbon electrode s were 66 F/g and 39 F/cc, and these values decreased to 54 F/g and 32 F/cc after 100 cycles, respectively showing 82% of charge-discharge efficiency. The properties of CV graph with the commercial activated carbon electrodes showed the serious polarization as the result of additional reaction between electrolyte and impurities of the electrode materials. In order to remove impurities efficiently, the commercial activated carbon was treated by alkali and acid solutions consecutively, and then heat treated to control the pore size distribution and the content of surface functional groups. The surface functional groups decreased with the increased heat temperature and the specific capacitance increased with the decreased surface functional groups. The initial capacitance of coconut shell based activated carbon elec trode which was treated with NaOH and HNO3, and then heat treated at $800^{\circ}C$ was 44 F/cc, and the value turned out to be 42 F/cc after 100 cycles, showing over 95% of charge-discharge efficiency.

Coconut shell 계 상용 활성탄을 후처리하여 EDLC 전극재로 적용하였다. Coconut shell계 활성탄을 별도의 처리없이 EDLC 전극재로 사용하였을 때, 초기 무게용량 및 부피용량은 66 F/g 및 39 F/cc이었고, 100 사이클 충 방전을 반복한 후, 각각 54 F/g 및 32 F/cc로 감소하여 82%의 충 방전효율을 나타내었다. 충 방전 반복에 따른 용량의 감소폭이 크며, CV 특성에서 부반응에 의한 분극현상이 발생하여 전극재로 적합하지 않았다. 상업용 활성탄에 포함된 불순물을 효율적으로 제거하기 위하여 알칼리 및 산 처리를 하였고, 그 후 세공 분포와 표면의 산성 관능기 함량을 제어하기 위하여 질소 분위기에서 열처리하였다. 알칼리 및 질산처리 한 후 $800^{\circ}C$에서 열처리한 전극재의 경우, 초기부피용량 44 F/cc, 100사이클 후 42 F/cc로서 실용화 가능한 수준의 높은 부피용량 및 95% 이상의 높은 충 방전 효율을 나타내었다.

Keywords

Acknowledgement

Supported by : 명지대학교

References

  1. R. Katz, and M. Carlen, Principles and Applications of Electrochemical Capacitors", Elec trochimica Acta, 45, 2483 (2000). https://doi.org/10.1016/S0013-4686(00)00354-6
  2. M. Hahn , O. Barbier, R. Gallay, and R. Kotz, A Dilatometric Study of the Voltage Limitation of Carbonaceous Elec trodes in Aprotic EDLC Type Elec trolytes by Charge - induced Strain. Carbon, 44 , 2523 (2006). https://doi.org/10.1016/j.carbon.2006.05.002
  3. G. H. Yuan , Electrochemical capacitors, Beijing, Chemical Industry Press, 1 (2006)
  4. A. G. Pandolfo and A. F. Hollenkamp, Carbon Properties and Their Role in Supercapacitors", J. Power Source. 1.57, 11 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.065
  5. W. M. Qiao, Y. Korai, I. Mochida , Y. Hori, and T, Maeda, Preparation of an Activated Carbon Artifact: Oxidative Modification of Coconut Shell- based Carbon to Improve the Strength ", Carbon, 40, 351 (2002). https://doi.org/10.1016/S0008-6223(01)00110-5
  6. D. Y. Qu, Studies of the Activated Carbons Used in Double-layer Supercapacitors ", J. Power Source, 109, 403 (2002). https://doi.org/10.1016/S0378-7753(02)00108-8
  7. B. E. Conway, Electrochemical Supe rcapacitors: Scientific Fundamentals and Technological Applications, Kluwer, New York, 1999, p. 183.
  8. K. Kinoshita, Carbon: Electrochemical and Physicochemical Properties, Wiley, New York, 1988, p. 125.
  9. B. Saha, M. H. Tai, and M. Streat, Metal Sorption Pe rformance of an Activated Carbon after Oxidation and Subsequent Treatment. Trans Icheme (Part B) , 79, 345 (2001). https://doi.org/10.1205/095758201753373113
  10. J. Shim, S. Park, and S. Rye. Effect of Modifica ti on with HNO3 and NaOH on Metal Adsorption by Pitch - based Activated Carbon Fibers, Carbon, 39, 1635 (2001). https://doi.org/10.1016/S0008-6223(00)00290-6
  11. S. J. Park, and B. J. Kim, Carbon Materials for Electroc hemical Capacitors, Carbon Science, 6, 257 (2005).
  12. J. Wu, I. Hong, S. - M. Park, S. - Y. Lee, and M. - So Kim, Electrochemical Properties of EDLC Electrodes Prepared by Acid and Heat Treatment of Commercial Activated Carbons ". Carbon Letters. 9 (2) 137 (2008). https://doi.org/10.5714/CL.2008.9.2.137
  13. J. Wu, Electrochemical Performance of Activated Carbon Electrode Materials with Post Treatment for EDLC, Master Thesis, Myongji University, 2008, p.47.
  14. F. Rodriguez- Reinoso, Activated Carbon: Structure , Characterization. Preparation and Application, Book chapterin Introd uction to Carbon Technology, ed. H. Marsh, E. A. Heintz and F. Rodriguez- Reinoso, University of Alicante, 1997, p.45.
  15. S. Y. P. Wu, C. Ji ang, C. Wan, and R. Holze , Effect of pretreatment of natural graphite by oxidative solutions on its electrochemical performance as anode material, Electrochemical Acta, 48, 867 (2003). https://doi.org/10.1016/S0013-4686(02)00780-6
  16. S.-H. Moon, W. Jin, T.- R. Kim, H.- S. Hahm, H. - So Park, and M. - So Kim, Performance of Graphite Electrode Modified with Acid Treatment for Lithium Ion Secondary Battery, J. Korean Oil Chemists' Soc., 22, 142 (2005).

Cited by

  1. Electrochemical Performance of Activated Carbon Electrode Materials with Various Post Treatments for EDLC vol.24, pp.6, 2014, https://doi.org/10.3740/MRSK.2014.24.6.285