• Title/Summary/Keyword: coaxial channel

Search Result 33, Processing Time 0.021 seconds

A Design of Microwave Measurement Board for Multi-channel Coaxial Cable Assembly (다중 채널 동축 케이블의 초고주파 측정용 보드 설계)

  • Moon, Soo-Deok;Kim, Jin-Kyu;Hwang, Hee-Yong
    • Journal of Industrial Technology
    • /
    • v.27 no.A
    • /
    • pp.169-175
    • /
    • 2007
  • In High-Speed DSP systems, crosstalk between transmission lines of multi-channel can degrade the performance of equipment operations. This paper presents a microwave board to measure multi-channel coaxial cable assembly. The designed board has good performances from DC to 3 GHz, which have improved characteristic impedance, reduced crosstalk by using via fence, and low transmission loss. Using the designed board, we can measure characteristics of DUT(Device Under Test) such as return loss, insertion loss, crosstalk phase delay, and characteristic impedance. The measured results are used to improve performances of a produced coaxial cable assembly.

  • PDF

Remote Field Energy Flow Path at Nonmagnetic Coaxial Tubes (비자성체 이중관의 원격장 에너지 전달 경로)

  • Yi, Jae-Kyung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.5
    • /
    • pp.526-531
    • /
    • 2001
  • The flow of remote field eddy current energy is studied at nonmagnetic coaxial tubes by using both experiments and finite element calculations based on commercial software package. The results showed that remote field eddy current energy at coaxial tubes flow along over the outer surface of external tube, not through the gap between internal and external tubes. This means that the through wall transmission characteristic of remote field eddy current testing (RFECT) is still valid at tube in tube configurations and the RFECT could be potential nondestructive technique for crack detection, spacer location and gap sizing at the coaxial CANDU fuel channel tubes.

  • PDF

Basic Experiment on the Propagation Characteristics of Premixed Flames in Narrow Annular Coaxial Quartz Tubes (좁은 다중 동축 석영관 내부에서의 예혼합 화염의 전파 특성에 대한 기초 실험)

  • Cho, Moon Soo;Baek, Da Bin;Kim, Nam Il
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.2
    • /
    • pp.1-7
    • /
    • 2013
  • Flame stabilization characteristics of premixed flames in narrow annular coaxial tubes (NACT) were investigated experimentally. The NACT burner was proposed as a model of a cylindrical refractory burner, and it was made of quartz tubes. Flame stabilization conditions affected by the characteristic length of the burner was investigated with the variation of the equivalence ratio and the flow rates. Flame behaviors in narrow spaces could be directly observed. Conclusively, more wide flame stabilization conditions could be obtained at the case of the decreased channel scale. A flame instability, such as combustion noise was detected concerned with the flame oscillation observed at the surface of multi channel stage. Some flame propagation characteristics had complicated tendencies that may exist in practical porous-media combustors. Therefore, this NACT burner can be a basic configuration for the development of flame stabilization model in porous media combustor, and it will enhance our understanding about the behavior of flames in meso-scale combustion spaces.

Direct Observation of Premixed Flame Propagation Characteristics in an Annular Coaxial 5-Tubes Burner (환형 5중 동축관 연소기 내부에서의 예혼합 화염의 전파 특성 직접 관찰)

  • Cho, Moon Soo;Baek, Da Bin;Kim, Nam Il
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.3
    • /
    • pp.24-30
    • /
    • 2013
  • Flame stabilization characteristics of premixed flames in an annular coaxial 5-tubes burner (AC5TB) were investigated experimentally. The AC5TB was made of five quartz tubes, and the flame stabilization conditions in that burner were investigated with the variation of equivalence ratio and the flow velocities. Flame behaviors inside of narrow annular tubes could be observed directly. Overall flame stabilization conditions were similar to that of the previous study, while the flame behaviors and structures were different mainly due to the controlled uniform distribution of the velocities in channels. Flame flashback conditions were thought to be governed by the competition between heat release rate, heat loss and heat recirculation in each channel. Stationary flames at a fixed location were compared in its velocity distribution and burned gas temperature across the channel. This AC5TB can be a basic configuration for the development of flame stabilization model of porous media combustors, and it will help understand about the real behavior of flames in meso-scale combustion spaces.

Process Modeling of Germanium Condensation and Application to Nanowire PMOSFET (게르마늄 응축 공정의 모델링과 나노와이어 PMOSFET 응용)

  • Yun, Mina;Cho, Seongjae
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.3
    • /
    • pp.39-45
    • /
    • 2016
  • In this paper, prcess modeling of germanium condensation has been performed and a germanium PMOSFET having nanowire channel implented by the condensation process has been designed and characterized by device simulations. Based on the previous experimental results, our modeling results demonstrate that the ratio of germanium concentration at the silicon germanium-silicon dioxide interface ($C_S$) to that in the bulk region ($C_B$) which are obtainable during the germanium condensation is approximately 4.03 and the effective diffusion coefficient ($D_{eff}$) of germanium atom is $3.16nm^2/s$. Furthermore, a germanium nanowire-channel PMOSFET having the ultra-thin germanium channel on the silicon core that can be fabricated by the germanium condensation has been designed and characterized. As the result, it is confirmed that the proposed device having the coaxial nanowire consisting of silicon core and germanium channel might have superior performances over the device with either all-silicon or all-germanium channel.

A Study on Effective Bandwidth Algorithms for Mass Broadcasting Service with Channel Bonding (채널 결합 기반 대용량 방송서비스를 위한 유효 대역폭 추정 알고리즘에 대한 연구)

  • Yong, Ki-Tak;Shin, Hyun-Chul;Lee, Dong-Yul;You, Woong-Sik;Choi, Dong-Joon;Lee, Chae-Woo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.49 no.3
    • /
    • pp.47-61
    • /
    • 2012
  • parallel transmitting system with channel bonding method have been proposed to transmit mass content such as UHD(Ultra High Definition) in HFC(Hybrid Fiber Coaxial) networks. However, this system may lead to channel resource problem because the system needs many channels to transmit mass content. In this paper, we analyze three effective bandwidth approximation algorithms to use the bonding channel efficiently. These algorithms are the effective bandwidth of Gaussian approximation method algorithm proposed by Guerin, the effective bandwidth based on statistics of video frames proposed by Lee and the effective bandwidth based on Gaussian traffic proposed by Nagarajan. We also evaluate compatibility of algorithms to the mass broadcasting service. OPNET simulator is used to evaluate the performance of the algorithms. For accuracy of simulation, we make mass source from real HD broadcasting stream.

Development of MR Compatible Coaxial-slot Antenna for Microwave Hyperthermia (초고주파 가열치료를 위한 MR 호환 동축 슬롯 안테나의 개발)

  • Kim, T.H.;Chun, S.I.;Han, Y.H.;Kim, D.H.;Mun, C.W.
    • Journal of Biomedical Engineering Research
    • /
    • v.30 no.4
    • /
    • pp.333-340
    • /
    • 2009
  • MR compatible coaxial-slot antenna for microwave hyperthermia was developed while its structure and size of each part were determined by computer simulation using finite element method(FEM). Its local heating performance was evaluated using tissue-mimic phantom and swine muscles. 2% agarose gel mixed with 6mM/$\ell$ $MnCl_2$ as a biological tissue-mimic phantom was heated by the proposed antenna driven by a 2.45GHz microwave generator. The temperature changes of the phantom were monitored using multi-channel digital thermometer at the distance of 0mm, 5mm, 10mm and 20mm from the tip center of the antenna. Also muscle tissue of swine was heated for 2 and 5minutes with 50W and 30W of microwave generator powers, respectively, to evaluate the local heating performance of the antenna. MRI compatibility was also verified by acquiring MR images and MR temperature map. MR signals were acquired from the agarose gel phantom using $T2^*$ GRE sequence with 1.5T clinical MRI scanner(Signa Echospeed, GE, Milwaukee, WI, U.S.A.) at Pusan Paik Hospital and were transferred to PC in order to reconstruct MR images and temperature map using proton resonance frequency(PRF) method and laboratory-developed phase unwrapping algorithm. Authors found that it has no severe distortion due to the antenna inserted into the phantom. Finally, we can conclude that the suggested coaxial-slot antenna has an excellent local heating performance for both of tissue-mimic phantom and swine muscle, and it is compatible to 1.5T MRI scanner.

Transmission Method and Simulator Development with Channel bonding for a Mass Broadcasting Service in HFC Networks (HFC 망에서 대용량 방송서비스를 위한 채널 결합 기반 전송 방식 및 시뮬레이터 개발)

  • Shin, Hyun-Chul;Lee, Dong-Yul;You, Woong-Shik;Choi, Dong-Joon;Lee, Chae-Woo
    • Journal of Broadcast Engineering
    • /
    • v.16 no.5
    • /
    • pp.834-845
    • /
    • 2011
  • Massive broadcasting contents such as UHD(Ultra High Definition) TV which requires multi-channel capacity for transmission has been introduced in recent years. A transmission scheme with channel bonding has been considered for transmission of massive broadcasting contents. In HFC(Hybrid Fiber Coaxial) networks, DOCSIS 3.0(Data Over Cable Service Interface Specification 3.0) has already applied channel bonding schemes for up/downstream of data service. A method unlike DOCSIS 3.0 is required to introduce a channel bonding scheme in the broadcasting service having unidirectional transmission with a downstream. Since a massive broadcasting content requires several channels for transmission, VBR(Variable Bit Rate) transmission has been emerging for the bandwidth efficiency. In addition, research on channel allocation and resource scheduling is required to guarantee QoS(Quality of Service) for the broadcasting service based on VBR. In this paper, we propose a transmission method for mass broadcasting service in HFC network and show the UHD transmission simulator developed to evaluate the performance. In order to evaluate the performance, we define various scenarios. Using the simulator, we assess the possibility of channel bonding and VBR transmission for UHD broadcasting system to provide mass broadcasting service efficiently. The developed simulator is expected to contribute to the efficient transmission system development of mass broadcasting service.

The Band-Broadening Design of the Rotary Joint Transition for the X-Band Microwave Channel (X밴드 고주파 채널용 로터리 조인트 천이구조의 대역확장 설계)

  • Kim, Siok;Lee, Changhyeong;Han, Dajung;Roh, Donsuk;Kahng, Sungtek
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.3
    • /
    • pp.557-562
    • /
    • 2017
  • In this paper, we show the design of a rotary joint transition for the X-band channel in a rotatable microwave communication system. The transition seems complicated to make a channel between two coaxial cables through a cylindrical waveguide. To make a broad-band performance in the X-band with low insertion loss and return loss given the constraint on the length and radius of this complicated-looking cylindrical structure, Genetic Algorithm optimization is adopted to check the validity of an intensive parametric study in the design. The structure is fabricated and tested to show how valid the design method is as well as good frequency responses.

The Analysis on the Upsteam band Signal in the HFC Access Network (HFC 가입자망 상향대역 신호분석에 관한 연구)

  • 장문종;김선익;이진기
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2004.10c
    • /
    • pp.142-144
    • /
    • 2004
  • To provide more qualified data service on the HFC(Hybrid-Fiber Coaxial) access network, the channel characteristics of upstream transmission band should be carefully investigated and analysed. It will be easier to do network management if the monitoring system for noise measurement in the network is available, In this paper, noise analysis method and the frequency selection method in the upstream band for duplex transmission are suggested. And, Data aquisition device for the signal measurement Is implemented. With this network monitoring system, field test and the result from the collected data are described.

  • PDF