• Title/Summary/Keyword: coatings

Search Result 2,200, Processing Time 0.03 seconds

Performance Evaluation of Selective Coatings for Solar Thermal Collectors (태양열 집열기에 사용될 선택흡수막의 성능 평가)

  • Lee, Kil-Dong
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.4
    • /
    • pp.43-50
    • /
    • 2012
  • Metal-metal oxide (M-M oxide) cermet solar selective coatings with a double cermet layer film structure were deposited on the Al-deposited glass substrate by using a directed current (DC) magnetron sputtering technology. M oxide (CrO and ZrO) was used as the ceramic component in the cermets, and Cr and Zr used as the metallic components. In addition, black Cr (Cr-$Cr_2O_3$ cermet) solar selective coatings were deposited on the Ni-plated Cu substrate by using a electroplating method for comparison. The thermal stability tests were carried out for performance evaluation of solar coatings. Reflectance measurements were used to evaluate both solar absorptance(${\alpha}$) and thermal emittance (${\epsilon}$) of the solar coatings before and after thermal testing by using a spectrometer. Optical properties of optimized cermet solar coatings were ${\alpha}{\simeq}0.94-0.96$ and ${\epsilon}{\simeq}0.1$ ($100^{\circ}C$). The results of thermal stability test of M-M oxide solar coatings showed that the Cr-CrO cermet solar selective coatings were more stable than the Zr-ZrO cermet selective coatings at temperature of both $400^{\circ}C$ in air and $450^{\circ}C$ in vacuum. The black Cr solar selective coatings were degraded in air at temperature of $400^{\circ}C$. The main optical degradation modes of these coatings were diffusion of metal atoms, and oxidation.

Effect of Ultrasound on the Mechanical Properties of Electrodeposited Ni-SiC Nano Composite

  • Gyawali, Gobinda;Cho, Sung-Hun;Woo, Dong-Jin;Lee, Soo-Wohn
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.439-443
    • /
    • 2010
  • Nano sized SiC particles (270 nm) are easily agglomerated in nickel sulfamate electrolytic bath during a composite electrodeposition process. The agglomeration of nano particles in composite coatings can significantly reduce the mechanical properties of the composite coatings. In this study, Ni-SiC nano composite coatings were fabricated using a conventional electrodeposition process with the aid of ultrasound. Nano particles were found to be distributed homogeneously with reduced agglomeration in the ultrasonicated samples. Substantial improvements in mechanical properties were observed in the composite coatings prepared in presence of ultrasound over those without ultrasound. Ni-SiC composite coatings were prepared with variable ultrasonic frequencies ranging from 24 kHz to 78 kHz and ultrasonic powers up to 300 watts. The ultrasonic frequency of 38 kHz with ultrasonic power of 200 watt was revealed to be the best ultrasonic conditions for homogeneous dispersion of nano SiC particles with improved mechanical properties in the composite coatings. The microstructures, phase compositions, and mechanical properties of the composite coatings were observed and evaluated using SEM, XRD, Vickers microhardness, and wear test. The Vickers microhardness of composite coatings under ultrasonic condition was significantly improved as compared to the coatings without ultrasound. The friction coefficient of the composite coating prepared with an ultrasonic condition was also smaller than the pure nickel coatings. A synergistic combination of superior wear resistance and improved microhardness was found in the Ni-SiC composite coatings prepared with ultrasonic conditions.

Effect of Working Pressure and Substrate Bias on the Tribology Properties of the Cr-Al-N Coatings (Cr-Al-N 코팅의 마찰마모 특성에 미치는 공정압력과 바이어스 전압의 영향)

  • Choi, Seon-A;Kim, Seong-Won;Lee, Sungmin;Kim, Hyung-Tae;Oh, Yoon-Suk
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.6
    • /
    • pp.473-479
    • /
    • 2017
  • CrN coatings have been used as protective coatings for cutting tools, forming tools, and various tribological machining applications because these coatings have high hardness. Cr-Al-N coatings have been investigated to improve the properties of CrN coatings. Cr-Al-N coatings were fabricated by a hybrid physical vapor deposition method consisting of unbalanced magnetron sputtering and arc ion plating with different working pressure and substrate bias voltage. The phase analysis of the composition was performed using XRD (x-ray diffraction). Cr-Al-N coatings were grown with textured CrN phase and (111), (200), and (220) planes. The adhesion strength of the coatings tested by scratch test increased. The friction coefficient and removal rate of the coatings were measured by a ball-on-disk test. The friction coefficient and removal rate of the coatings decreased from 0.46. to 0.22, and from $2.00{\times}10^{-12}m^2/N$ to $1.31{\times}10^{-13}m^2/N$, respectively, with increasing bias voltage. The tribological properties of the coatings increased with increasing substrate bias voltage.

Nanocomposite Coating with TiAlN and Amorphous Carbon Phases Synthesized by Reactive Magnetron Sputtering

  • Kim, Bom Sok;Kim, Dong Jun;La, Joung Hyun;Lee, Sang Yong;Lee, Sang Yul
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.11
    • /
    • pp.801-808
    • /
    • 2012
  • TiAlCN coatings with various C contents were synthesized by unbalanced magnetron sputtering. The characteristics, the crystalline structure, surface morphology, hardness, and friction coefficient of the coatings as a function of the C content were investigated by X-ray diffraction (XRD), atomic force microscopy (AFM), a microhardness tester, and a wear test. In addition, their corrosion behaviors in a deaerated 3.5 wt% NaCl solution at $40^{\circ}C$ were investigated by potentiodynamic polarization tests. The results indicated that the $Ti_{14.9}Al_{15.5}C_{30.7}N_{38.9}$ coating had the highest hardness, elastic modulus, and a plastic deformation resistance of 39 GPa, 359 GPa, and 0.55, respectively, and it also had the lowest friction coefficient of approximately 0.26. Comparative evaluation of the TiAlCN coatings indicated that a wide range of coating properties, especially coating hardness, could be obtained by the synthesis methods and processing variables. The microhardness of the coatings was much higher than that from previously reported coating using similar magnetron sputtering processes. It was almost as high as the microhardness measured from the TiAlCN coatings (~41 GPa) synthesized using an arc ion plating process. The potentiodynamic test showed that the corrosion resistance of the TiAlCN coatings was significantly better than the TiAlN coatings, and their corrosion current density ($i_{corr}$), corrosion potentials ($E_{corr}$) and corrosion rate decreased with an increasing C content in the coatings. The much denser microstructure of the coatings due to the increased amount of amorphous phase with increasing C contents in the coatings could result in the the improved corrosion resistance of the coatings.

Study on High-Temperature Oxidation Behaviors of Plasma-Sprayed TiB2-Co Composite Coatings

  • Fadavi, Milad;Baboukani, Amin Rabiei;Edris, Hossein;Salehi, Mahdi
    • Journal of the Korean Ceramic Society
    • /
    • v.55 no.2
    • /
    • pp.178-184
    • /
    • 2018
  • In the present study, $TiB_2-Co$ composite coatings were thermally sprayed onto the surface of a 304 stainless steel substrate using an atmospheric plasma spray (APS). The phase analysis of the powders and plasma-sprayed coatings was performed using X-ray diffractometry analysis. The microstructures of the coatings were studied by a scanning electron microscope (SEM). The average particle size and flowability of the feedstocks were also measured. Both $TiB_2-32Co$ and $TiB_2-45Co$ (wt.%) coatings possessed typical dense lamellar structures and high-quality adhesion to the substrate. The oxidation behaviors of the coatings were studied at $900^{\circ}C$ in an atmospheric environment. In addition, the cross-sectional images of the oxidized coatings were analyzed by SEM. A thin and well-adhered layer was formed on the surface of both $TiB_2-Co$ coatings, confirming satisfactory high-temperature oxidation resistance. The kinetic curves corresponding to the isothermal oxidation of the coatings illustrated a short transient stage from rapid to slow oxidation during the early portion of the oxidation experiment.

Tribological Behavior of DLC Coatings at Various Humidities (습도에 따른 DLC 코팅의 마찰 거동)

  • Jo, Gyeong-Man;An, Hyo-Seok;Kim, Dae-Eun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1842-1848
    • /
    • 2002
  • Although DLC coatings have good tribological properties, these are dependant on the deposition method, the property of contact surface, and test condition. Humidity, which has little influence on tribological behavior in macro scale, is an important factor of tribological behavior in small devices like MEMS. The objective of this study is to investigate the tribological behavior of DLC coatings with particular attention to their wettability at various humidities. DLC coatings were deposited on Si substrates and tested using a reciprocating friction tester against Si$_3$N$_4$balls at various humidities. The results showed that the tribological behavior of DLC coatings was dependant on relative humidity and wettablility of DLC coatings. Friction coefficient at high relative humidity was higher thar that at low relative humidity. The tungsten-containing DLC coatings had a good wear resistance at low relative humidity whereas DLC coatings derived from argon(Ar)+cesium(Cs) gases showed a good wear resistance at high relative humidity.

Comparison of Tribological Characteristics of ZnO Coatings Prepared by Sputtering and Sol-gel Methods

  • Lin, Li-Yu;Kim, Dae-Eun
    • KSTLE International Journal
    • /
    • v.10 no.1_2
    • /
    • pp.23-26
    • /
    • 2009
  • In this work the tribological characteristics were compared between ZnO coatings on glass substrate prepared by sputtering and sol-gel methods. In order to assess the effects of processing method on the tribological characteristics, the friction and wear properties of the coatings were measured by using a reciprocating type of micro-tribotester. The sputtered ZnO coatings were prepared on a glass substrate at room temperature, $150^{\circ}$, and $300^{\circ}$. The ZnO coatings prepared by sol-gel method were heat-treated in air atmosphere at $550^{\circ}$ for one hour. The crystal structure and surface morphology of the coatings were measured by X-ray diffraction (XRD) and Atomic Force Microscope (AFM), respectively. The experimental results showed that overall the sputtered coatings exhibited better friction and wear properties than coatings prepared by sol-gel method. The sputtered coating grown at room temperature had a relatively low friction coefficient of 0.14 and superior wear resistance compared with the other coatings. Nevertheless, sol-gel method of coating ZnO on glass is beneficial for economical coating of a large surface area.

Pulse Electrodeposition and Characterization of Ni-Si3N4 Composite Coatings

  • Gyawali, Gobinda;Woo, Dong-Jin;Lee, Soo-Wohn
    • Journal of the Korean institute of surface engineering
    • /
    • v.43 no.5
    • /
    • pp.224-229
    • /
    • 2010
  • $Ni-Si_3N_4$ nano-composite coatings were prepared by pulse current (PC) electrodeposition and direct current (DC) electrodeposition techniques. The micro-structure of the coatings was characterized by scanning electron microscopy (SEM), vickers microhardness, X-Ray Diffraction (XRD) and wear-friction tests. The results showed that the micro-structure and wear performance of the coatings were affected by the electrodeposition techniques. Pulse current electrodeposited $Ni-Si_3N_4$ composite coatings exhibited higher microhardness, smooth surface, and better wear resistance properties as compared to coatings prepared under DC condition. The $Ni-Si_3N_4$ composite coatings prepared at 50 Hz pulse frequency with 10% duty cycles has shown higher codeposition of nano-particles. Consequently, increased microhardness and less plastic deformations occurred in coatings during sliding wear test. The XRD patterns revealed that the increased pulse frequencies changed the preferred (100) nickel crystallite orientations into mixed (111) and (100) orientations.

A study on the water absorption in protective coatings (방식도막에 있어서 물의 흡수에 관한 연구)

  • Park Jin-Hwan
    • Journal of the Korean Electrochemical Society
    • /
    • v.1 no.1
    • /
    • pp.55-59
    • /
    • 1998
  • The water absorption in protective coatings, which may greatly influence the durability of these coatings, was studied using quartz crystal microbalance and electrochemical impedance technique. The water absorption in protective coatings and the change of coating capacitance with concentration of electrolyte were measured. The water absorption in coatings seems to be driven by osmotic pressure, and larger amount of water was absorbed in thinner coatings at initial stage of absorption. The amount of water absorbed in coatings changed with the type and crosslinking density of resin used in coating formulation. When water absorption and desorption of coating occured by exposing the coatings to electrolyte solutions of different concentration, increase in impedance caused by desorption of water was found to be higher in the case of thinner film.

Pulse electrodeposition and characterization of Ni-$TiO_2$ nano composite coatings

  • Cho, Sung-Hun;Gyawali, Gobinda;Woo, Dong-Jin;Lee, Soo-Wohn
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2011.05a
    • /
    • pp.153-153
    • /
    • 2011
  • Ni $TiO_2$ nano composite coatings were fabricated by using pulse current electrodeposition technique at 100 Hz pulse frequency with a constant 50% pulse duty cycles and reference was taken with respect to the direct current electrodeposition. The properties of the composite coatings were investigated by using SEM, XRD, Wear test and Vicker's microhardness test. XRD patterns of pulse deposited composite coatings were found to be changed from preferred (100) orientation to the random mixed orientations. The results demonstrated that the Vickers microhardness of composite coatings under pulse condition was significantly improved than that of pure nickel coating as well as direct current electrodeposited Ni-$TiO_2$ composite coatings. Wear tracks have shown the less plastic deformation at pulse condition with reduced coefficient of friction. Nickel matrix grain size was also found to be lower in pulse plated composite coatings as compared to direct current electrodeposited composite coatings.

  • PDF