• Title/Summary/Keyword: coating structure

Search Result 1,215, Processing Time 0.028 seconds

Evaluation of Self-cleaning Property by Measuring Brightness of Tio2 Coating Ceramic Tile under Outdoor Exposure Test (옥외폭로시험 Tio2 코팅 세라믹 타일의 명도측정에 의한 방오특성 평가)

  • Shin, Dae-Yong;Kim, Kyung-Nam
    • Journal of the Korean Ceramic Society
    • /
    • v.45 no.6
    • /
    • pp.345-349
    • /
    • 2008
  • $TiO_2$ coating ceramic tile for self-cleaning purpose was prepared by the precipitant dropping method using $TiCl_4$ as a precursor. $TiO_2$ film was formed on the ceramic tile by spray-coating technique and heat-treated at $500^{\circ}C$ for 1 h. The size and crystalline structure of $TiO_2$ particles were 15.3 nm and anatase phase. The outdoor exposure tests were conducted and the effects of outdoor exposure test conditions, such as exhaust concentration of contamination materials (test places), the UV light intensity (irradiation direction) and coating amounts of $TiO_2$ on the self-cleaning properties were investigated by the brightness measurements. As a results, self-cleaning property of $TiO_2$ coating tile was affected by the coating amount of $TiO_2$ however, not affected by the UV light intensity included in sun's ray (irradiation direction). $TiO_2$ coating ceramic tile can be utilized for exterior finishing materials because of self-cleaning property of $TiO_2$ coating tile.

Characteristics of TiAlCrSiN coating to improve mold life for high temperature liquid molding (고온 액상 성형용 금형 수명 향상을 위한 TiAlCrSiN 코팅의 특성)

  • Yeo, Ki-Ho;Park, Eun-Soo;Lee, Han-Chan
    • Journal of the Korean institute of surface engineering
    • /
    • v.54 no.5
    • /
    • pp.285-293
    • /
    • 2021
  • High-entropy TiAlCrSiN nano-composite coating was designed to improve mold life for high temperature liquid molding. Alloy design, powder fabrication and single alloying target fabrication for the high-entropy nano-composite coating were carried out. Using the single alloying target, an arc ion plating method was applied to prepare a TiAlCrSiN nano-composite coating had a 30 nm TiAlCrSiN layers are deposited layer by layer, and form about 4 ㎛-thickness of multi-layered coating. TiAlCrSiN nano-composite coating had a high hardness of about 39.9 GPa and a low coefficient of friction of less than about 0.47 in a dry environment. In addition, there was no change in the structure of the coating after the dissolution loss test in the molten metal at a temperature of about 1100 degrees.

The Critical Pigment Volume Concentration Concept for Paper Coatings: II. Later-Bound Clay; Ground Calcium Carbonate, and Clay- carbonate Pigment Coatings

  • Lee, Do-Ik
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.5
    • /
    • pp.18-38
    • /
    • 2002
  • A previous study on the model coatings based on latex-bound plastic pigment coatings (1) has been extended to latex-bound No. 1 clay, ultra-fine ground calcium carbonate (UFGCC), and clay-carbonate pigment mixture coatings, which are being widely used in the paper industry. The latex binder used was a good film-forming, monodisperse S/B latex or 0.15$\mu\textrm{m}$. No. 1 clay was representative of plate-like pigment particles, whereas UFGCC was of somewhat rounded rhombohedral pigment particlel. Both of them had negatively skewed triangular particle size distributions having the mean particle suet of 0.7${\mu}{\textrm}{m}$ and 0.6$\mu\textrm{m}$, respectively. Their packing volumes were found to be 62.5% and 657%, respectively. while their critical pigment volume concentrations (CPVC's) were determined to be 52.7% and 50.5% ( average of 45% caused by the incompatibility and 55.9% extrapolated) by coating porosity, respectively. Each pigment/latex coating system has shown its unique relationship between coating properties and pigment concentrations, especially above its CPVC. Notably, the clay/latex coating system hat shown higher coating porosity than the UFGCC/latex system at high pigment concentrations above their respective CPVC's. It was also found that their coating porosity and gloss were inter-related to each other above the CPVC's, as predicted by the theory. More interestingly, the blends of these two pigments have shown unique rheological and coating properties which may explain why such pigment blends are widely used in the industry. These findings have suggested that the unique structure of clay coatings and the unique high-shear rheology of ground calcium carbonate coatings can be judiciously combined to achieve superior coatings. Importantly, the low-shear viscosity of the blends was indicative of their unique packing and coating structure, whereas their high-shear rheology was represented by a common mixing rule, i.e., a viscosity-averaging. Transmission and scanning electron and atomic force microscopes were used to probe the state of pigment / latex dispersions, coating surfaces, freeze fractured coating cross-sections, and coating surface topography. These microscopic studies complemented the above observations. In addition, the ratio, R, of CPVC/(Pigment Packing Volume) has been proposed as a measure of the binder efficiency for a given pigment or pigment mixtures or as a measure of binder-pigment interactions. Also, a mathematical model has been proposed to estimate the packing volumes of clay and ground calcium carbonate pigments with their respective particle size distributions. As well known in the particle packing, the narrower the particle size distributions, the lower the packing volumes and the greater the coating porosity, regardless of particle shapes.

Characterization of both adhesion and interfacial interaction between optical fiber coating and structural

  • Brotzu, A.;Felli, F.;Fiori, L.;Caponero, M.A.
    • Smart Structures and Systems
    • /
    • v.4 no.4
    • /
    • pp.439-448
    • /
    • 2008
  • Optical fiber sensors are by now broadly accepted as an innovative and reliable device for structural health monitoring, to be used either embedded into or bonded on structures. The accuracy of the strain measurement achievable by optical fiber sensors is critically dependent on the characteristics of the bonding of the various interface layers involved in the sensor bonding/embedding (structure material and gluing agent, fiber coating and gluing agent, fiber coating and fiber core). In fact, the signal of the bonded/embedded optical fiber sensor must correspond to the strain experienced by the monitored structure, but the quality of each involved interface can affect the strain transfer. This paper faces the characterization, carried on by both mechanical tests and morphological analysis, of the strain transfer function resulting with epoxidic and vinylester gluing agent on polyimide and acrylate coated optical fibers.

Improvement of Electrochemical Performance of LiFePO4 by Carbon Coating and Morphology Control into Porous Structure (LiFePO4/C의 carbon coating 방법 및 다공성 구조 형성에 의한 전기화학적 특성 개선)

  • Kong, Ki Chun;Ju, Jeh Beck
    • Journal of the Korean Electrochemical Society
    • /
    • v.17 no.4
    • /
    • pp.229-236
    • /
    • 2014
  • In this study, the method to improve the electrochemical performance of $LiFePO_4$ by carbon coating and morphology control into porous structure was studied. The synthesis of $LiFePO_4$ was done by coprecipitation method by two step procedure. In the first step $FePO_4$ precursor was synthesized by coprecipitation method, followed by impregnation of lithium into the precursor at $750^{\circ}C$. The carbon coating was done by both physical and chemical coating processes. Using the physical coating process, the amount of coating layer was 6% and the capacity achieved was 125 mAh/g. In case of chemical coating process, the active material delivered 130~140 mAh/g, which is about 40% improvement of delivered capacity compared to uncoated $LiFePO_4$. For the morphology control into porous structure, we added nano particles of $Al_2O_3$ or $SiO_2$ into the active materials and formed the nanocomposite of ($Al_2O_3$ or $SiO_2$)/$LiFePO_4$. Between them, $SiO_2/LiFePO_4$ porous nanocomposite showed larger capacity of 132 mAh/g.

Evaluation on Spalling Properties of 80MPa High Strength Concrete with Fireproof Coating (내화피복재에 따른 80MPa 고강도 콘크리트의 폭렬 특성 평가)

  • Park, Gwi-Min;Kim, Gyu-Yong;Choe, Gyeonh-Cheol;Yoon, Min-Ho;Lee, Young-Wook;Hwang, Eui-Chul
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2015.11a
    • /
    • pp.126-127
    • /
    • 2015
  • Because of the high-rise and bigger building structure, high strength concrete's demand was increased. However, chemicophysical property of concrete is changed by high temperature. Therefore, this study evaluated on spalling properties of 80MPa high strength concrete with fireproof coating. The result, when complex fireproof coating spread on concrete, it has good fire safety that was thinner than single fireproof coating spread on concrete.

  • PDF

Effect of the WC particle size and Co content on the adhesion property between AIP-TiN coating and WC-Co substrate (AIP-TiN/WC-Co계에서 WC입자크기와 Co함량이 밀착력에 미치는 영향)

  • 한대석;류정민;권식철;김광호
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.3
    • /
    • pp.165-171
    • /
    • 2002
  • TiN coating were deposited onto different WC-Co substrates using arc ion plating (AIP) technique. The structure and morphology for the deposited coating were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). The adhesion behavior of the deposited TiN coating was investigated with a conventional scratch test. Effects of WC particle size and Co content on the adhesion strength between the deposited TiN coating and substrate were studied. During the scratch test, the value of critical load was dependent of WC particle size and Co content on substrate. As the WC particle size and Co content on substrate decreased, the critical load increased. The highest critical load, approximately 110N, was obtained at WC particle size of 1$\mu\textrm{m}$ and Co content of 10wt.%.

Fabrication and Properties Analysis of MEA for PEMFC (고분자전해질 연료전지용 MEA 제조 및 특성평가)

  • Cho Y.H.;Cho Y.H.;Park I.S.;Sung Y.E.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.06a
    • /
    • pp.230-234
    • /
    • 2005
  • Fabrication of MEA is important factor for proton exchange membrane fuel cell (PEMFC). MEA of PEMFC with hot pressing and direct coating method were prepared, and performances were evaluated and compared each other. The effect of MEA preparation methods, hot pressing methods and direct coating methods, on the cell performance was analyzed by impedance spectroscopy and SEM. The performance of PEMFC with direct coating method was better than with hot pressing method because membrane internal resistance and membrane-interfacial resistance were reduced by elimination of hot pressing process in MEA fabrication. In addition the micro structure of MEA with direct coating method reveals uniform interface between membrane and catalyst layer.

  • PDF

Analysis of Wave Decay Characteristics of Viscoelastic Compliant Coating (점탄성 유동벽면의 파동 감쇠 특성 해석)

  • Kulik Victor M.;Jung, Kwang-Hyo;Chun Ho-Hwan;Lee, In-Won
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.12 s.255
    • /
    • pp.1155-1163
    • /
    • 2006
  • Calculation was carried out for phase velocity and deformation wave decay in a layer of viscoelastic material fixed tightly on the solid substrate. Analysis has been performed regarding the inner structure of the wave, i.e., the proportions between the vertical and horizontal displacements and their profiles. The wave characteristics depend strongly on media compressibility factor. The effect of viscous losses on parameters of the main oscillation mode was studied in detail. Results were compared with the model of coating with local deformation. A new experimental approach was made in order to measure such wave properties of a compliant coating as the dependency of deformation wave velocity on frequency and decay factor was made. The method for estimation of coating parameters enabling the drag reduction in turbulent flow was then refined.

Derivation of Cubic and Hexagonal Mesoporous Silica Films by Spin-coating

  • Pan, Jia-Hong;Lee, Wan-In
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.3
    • /
    • pp.418-422
    • /
    • 2005
  • By introducing spin-coating method to the evaporation induced self-assembly (EISA) process, a simple and reproducible route in controlling the mesophase of silica thin films has been developed for the first time in this work. When a comparatively solvent-rich Si-sol (The atomic ratio of TEOS : F127 : HCl : $H_2O$ : EtOH = 1 : 0.006 : 0.2 : 9.2 : 30) was used as coating solution, the mesophase of resultant silica films was selectively controlled by adjusting the spin-on speed. The cubic mesophase has been obtained from the coating at a low rpm, such as 600 rpm, while the 2-D hexagonal mesophase is formed at a high rpm, such as 2,500 rpm. At a medium coating speed, a mixture of cubic and hexagonal mesophase has been found in the fabricated films. The present results confirm that the evaporation rate of volatile components at initial step is critical for the determination of mesopore structures during the EISA process.