• Title/Summary/Keyword: coating structure

Search Result 1,207, Processing Time 0.031 seconds

An Optimal Die Design for the Coating Uniformity of Non-Newtonian Liquids in Slot Coating Process (Slot 코팅 공정에서 Non-Newtonian 유체의 코팅 균일성을 위한 최적 다이 설계)

  • Lee, Si-Hyung;Koh, Hyun-Jung;Shim, Seo-Hoon;Jung, Hyun-Wook;Hyun, Jae-Chun
    • Korean Chemical Engineering Research
    • /
    • v.49 no.3
    • /
    • pp.314-319
    • /
    • 2011
  • In this study, the flow behavior of Newtonian and non-Newtonian coating liquids inside slot die has been scrutinized for the purpose of optimal internal die design in slot coating system from three-dimensional computations by CFD Fluent solver. A hybrid slot die could be optimally designed by changing the chamber or manifold structure to guarantee the uniform velocity distribution of coating liquids at die exit. Especially, for the non-Newtonian coating liquids, the length of coat-hanger for the uniform coating has been properly chosen, according to the degree of their shearthinning properties.

Photoresist spray coating for three-dimensional micro structure (3차원 마이크로 구조를 위한 포토레지스트 스프레이 코팅)

  • Kim, Do-Wook;Eun, Duk-Su;Bae, Young-Ho;Yu, In-Sik;Suk, Chang-Gil;Jeong, Jong-Hyun;Cho, Chan-Seop;Lee, Jong-Hyun
    • Journal of Sensor Science and Technology
    • /
    • v.15 no.3
    • /
    • pp.153-157
    • /
    • 2006
  • This paper presents the method for three-dimensional micro structure with photoresist spray coating system. The system consists of a high temperature rotational chuck, ultrasonic spray nozzle module, angle control module and nozzle moving module. Spray coating system is effected by several parameters such as the solid contents, the dispensed volume, the scanning speed of the spray nozzle and the wafer of dimension. The photoresist (AZ 1512) has been coated on the three-dimensional micro structure by spray coating system and the characteristics have been evaluated.

Studies on the Pore of Coating Layer and Printability(III) -Effects of Properties of Latices on Pore of Coating Layer- (도공층의 공극과 인쇄적성에 관한 연구(제3보) -라텍스의 특성이 미치는 영향-)

  • 이용규;김창근
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.33 no.2
    • /
    • pp.41-48
    • /
    • 2001
  • This paper was made to evaluate the effect of the type of latex for coating on the printability by investigating the structure of pore such as the pore fraction, the number of pores, pore size and distribution of coated paper. The coated structure is mainly depend on the results of interaction between pigment and binder. It means that the structure of pore formed is chiefly affected by the type of latex. This physical properties of pore have a close relation with ink set-off associated with the drying rate, the speed of penetration of ink into base paper and printing gloss. Therefore it was necessary to find out the relationship between pore structure and the performance of printability by modifying the type of latex to vary the pore structure of coated paper. Acrylic latex was superior to S/B latex in the sedimentation volume, compressibility, smoothness, pore fraction and its number, the weight of transferred ink onto the coated paper and ink repellance. In contrast, water retention and ink setting were not good. in the comparison of anionic and amphoteric latex, amphoteric latex showed better performance in the thickness, smoothness, pore fraction and its number, pore size, the weight of ink transmitted and K&N ink receptivity, etc.

  • PDF

Failure and Phase Transformation Mechanism of Multi-Layered Nitride Coating for Liquid Metal Injection Casting Mold

  • Jeon, Changwoo;Lee, Juho;Park, Eun Soo
    • Korean Journal of Materials Research
    • /
    • v.31 no.6
    • /
    • pp.331-338
    • /
    • 2021
  • Ti-Al-Si target and Cr-Si target are sputtered alternately to develop a multi-layered nitride coating on a steel mold to improve die-casting lifetime. Prior to the multi-layer deposition, a CrN layer is developed as a buffer layer on the mold to suppress the diffusion of reactive elements and enhance the cohesive strength of the multi-layer deposition. Approximately 50 nm CrSiN and TiAlSiN layers are deposited layer by layer, and form about three ㎛-thickness of multi-layered coating. From the observation of the uncoated and coated steel molds after the acceleration experiment of liquid metal injection casting, the uncoated mold is severely eroded by the adhesion of molten metallic glass. On the other hand, the multi-layer coating on the mold prevents element diffusion from the metallic glass and mold erosion during the experiment. The multi-layer structure of the coating transforms the nano-composite structured coating during the acceleration test. Since the nano-composite structure disrupts element diffusion to molten metallic glass, despite microstructure changes, the coating is not eroded by the 1,050 ℃ molten metallic glass.

A Study on the Improvement of Multi-Layer Coating Method on Concrete Base (성형 콘크리트 복층마감도장 공법 개선에 관한 연구)

  • Kim, Chong-Weon;Choi, In-Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.3 no.1
    • /
    • pp.93-105
    • /
    • 2003
  • The Precast Concrete(PC) method was developed for a large production of a structure in Europe. Afterwards, this PC method has been applied to a structure and an outside Coating of buildings extensively. The outside Coating of the building applied this PC method is a method to put tiles or stones to base concrete. And there is a method to use paints for, so the expression of various patterns is possible. The Multi-Layer Coating is one of the methods to use paints. This Multi-Layer Coating method can show various designs of external appearance with Foam when it is made with the PC panel. Also, the paint film of the PC panel enables a splendid appearance, and a protective function of concrete is possible, too. Therefore, it makes good durability of the PC. Besides, maintenance is easy to manage because it is free from pollution when it uses metallic materials, stones, or any other materials. You might have no trouble in applying the Multi-Layer Coating method in order to save a merit of an outside Coating on the PC panel. However, the Multi-Layer Coating method used as a current outside Coating method has pollution and bad working environment because Oil Epoxy Resins have toxicity and flammability. Therefore, a lot of warnings are required for coating work in order to have appropriate quality because working hours are short, and production efficiency is low too. These reasons make the cost of construction of the Multi-Layer Coating method increase. And employers or designers may have problems in selecting this Multi-Layer Coating method. Therefore, the purpose of this study is to get activation of the Multi-Layer Coating method by offering improvement measures about the problems of the existing Multi-Layer Coating method.

Improving printability by designing a multi-layered coating structure (I) - The effect of binder properties in the pre-coating layer on the characteristics of the top-coating layer - (다층도공층의 설계에 의한 인쇄적성 개선 (제1보) - 프리코팅층의 바인더 물성이 탑코팅층의 특성에 미치는 영향 -)

  • Kim, Sun-Kyung;Won, Jong Myoung;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.1
    • /
    • pp.27-33
    • /
    • 2016
  • This study was carried out in order to investigate the effect of binder properties in pre-coating layer on the characteristics of top-coating layer and print mottle of coated paper. Four different latices were used as a binder in pre-coating layer, and coating color prepared with a same formulation was applied for top-coating. The properties and print mottle of coated paper were evaluated. It was found that glass transition temperature (Tg) was the important factor to control the properties of pre- and top-coating layer. PPS roughness of coated paper was decreased and paper gloss was increased with applying binder which has lower Tg. Properties of top-coating layer were affected by the binder used in pre-coating layer. Print mottle of coated paper was improved with using binder which has lower Tg in pre-coating layer. These results indicate that final printability and properties of top-coating layer can be improved with using suitable binder in pre-coating layer.

Fiber network with superhydrophilic Si-DLC coating

  • Kim, Seong-Jin;Mun, Myeong-Un;Lee, Gwang-Ryeol;Kim, Ho-Yeong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.363-363
    • /
    • 2010
  • The high capillarity of a plastic fiber network having superhydrophilic Si-DLC coating is studied. Although the superhydrophilic surface maximize wetting ability on the flat surface, there remains a requirement for the more wettable surface for various applications such as air-filters or liquid-filters. In this research, the PET non-woven fabric surface was realized by superhydrophilic coating. PTE non-woven fabric network was chosen due to its micro-pore structure, cheap price, and productivity. Superhydrophobic fiber network was prepared with a coating of oxgyen plasma treated Si-DLC films using plasma-enhanced chemical vapor deposition (PECVD). We first fabricated superhydrophilic fabric structure by using a polyethylene terephthalate (PET) non-woven fabric (NWF) coated with a nanostructured films of the Si-incorporated diamond-like carbon (Si-DLC) followed by the plasma dry etching with oxygen. The Si-DLC with oxygen plasma etching becomes a superhydrophilic and the Si-DLC coating have several advantages of easy coating procedure at room temperature, strong mechanical performance, and long-lasting property in superhydrophilicity. It was found that the superhydrophobic fiber network shows better wicking ability through micro-pores and enables water to have much faster spreading speed than merely superhydrophilic surface. Here, capillarity on superhydrophilic fabric structure is investigated from the spreading pattern of water flowing on the vertical surface in a gravitational field. As water flows on vertical flat solid surface always fall down in gravitational direction (i.e. gravity dominant flow), while water flows on vertical superhydrophilic fabric surface showed the capillary dominant spreading.

  • PDF

The Study on the Reflection Coating Design Scheme in the Thin-Film Silicon Solar Cell (박막 실리콘 태양전지의 반사코팅 설계기술 연구)

  • Kim, Chang-Bong
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.12 no.11
    • /
    • pp.5172-5177
    • /
    • 2011
  • This paper presents a reflection coating design scheme in the thin-film silicon solar cell. The antireflection(high reflection) coating skill is needed in the front(back) panel of the thin-film solar cell to improve an efficiency of light absorbing. In the single structure a reflectivity is changed according to the thickness of coating for antireflection scheme and its minimum value can be obtained by controlling thickness of coating. In the symmetric multi layer structure low reflectivity can be obtained in the wide wavelength range. And we also find that high reflectivity can be obtained through multi layer structure, which has alternate layers of high and low material, for high reflection scheme in the back panel.

Improvement of printability by the new designe of the multi-layered coating structure (II) - The effect of pigment blending in pre-coating layer on characteristics of top-coating layer - (다층도공층의 설계에 의한 인쇄적성 개선(제2보) - 프리코팅층의 안료배합이 탑코팅층의 특성에 미치는 영향 -)

  • Kim, Sun-Kyung;Won, Jong Myoung;Lee, Yong-Kyu
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.48 no.2
    • /
    • pp.61-67
    • /
    • 2016
  • This study was carried out in order to investigate the effect of pigment properties in a pre-coating layer on the characteristics of a top-coating layer and the print mottle of the coated paper. Five different pigments were applied for this study as raw materials for the pre-coating layer. The properties and print mottle of the coated paper samples were evaluated according to the coating color formulation. Type of pigments appliied in a pre-coating layer was one of the most important factor to control the properties of pre and top coating layer. Surface properties of pre and top coated paper were improved by blending GCC which had smaller particle size, with clay. Properties of a top-coating layer was affected by the pigment properties used in the pre-coating layer. It was found that print mottle of coated paper can be improved by replacing part of GCC with smaller particle size GCC or clay in pre-coating layer.

Coating defect classification method for steel structures with vision-thermography imaging and zero-shot learning

  • Jun Lee;Kiyoung Kim;Hyeonjin Kim;Hoon Sohn
    • Smart Structures and Systems
    • /
    • v.33 no.1
    • /
    • pp.55-64
    • /
    • 2024
  • This paper proposes a fusion imaging-based coating-defect classification method for steel structures that uses zero-shot learning. In the proposed method, a halogen lamp generates heat energy on the coating surface of a steel structure, and the resulting heat responses are measured by an infrared (IR) camera, while photos of the coating surface are captured by a charge-coupled device (CCD) camera. The measured heat responses and visual images are then analyzed using zero-shot learning to classify the coating defects, and the estimated coating defects are visualized throughout the inspection surface of the steel structure. In contrast to older approaches to coating-defect classification that relied on visual inspection and were limited to surface defects, and older artificial neural network (ANN)-based methods that required large amounts of data for training and validation, the proposed method accurately classifies both internal and external defects and can classify coating defects for unobserved classes that are not included in the training. Additionally, the proposed model easily learns about additional classifying conditions, making it simple to add classes for problems of interest and field application. Based on the results of validation via field testing, the defect-type classification performance is improved 22.7% of accuracy by fusing visual and thermal imaging compared to using only a visual dataset. Furthermore, the classification accuracy of the proposed method on a test dataset with only trained classes is validated to be 100%. With word-embedding vectors for the labels of untrained classes, the classification accuracy of the proposed method is 86.4%.