• Title/Summary/Keyword: coating amount

Search Result 587, Processing Time 0.028 seconds

An Experimental Study on Effects of Soot Loading and Mass Flow Rate on Pressure Drop and Heat Transfer in Catalyzed Diesel Particulate Filter (촉매 코팅 DPF의 soot loading과 유량 변화에 따른 압력강하 및 열전달에 관한 실험적 연구)

  • Cho, Yong-Seok;Noh, Young-Chang;Park, Young-Joon;Kim, Duk-Sang
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.3
    • /
    • pp.72-78
    • /
    • 2007
  • A diesel particulate filter causes progressive increase in back pressure of an exhaust system due to the loading of soot particles. To maintain the pressure drop caused by DPF under proper level, a regeneration process is mandatory when excessive loading of soot is detected in the filter. It is a major reason why the relation between the amount of soot and the pressure drop in a DPF becomes crucial. On the other hand, pressure drop varies with not only the soot loading but also conditions of exhaust gas such as mass flow rate. Therefore, the relation among them becomes complicated. Furthermore, the characteristics of heat transfer in a DPF is another crucial parameter in order for the filter to avoid thermal crack during regeneration period. This study presents characteristics of pressure drop under various conditions of soot loading and mass flow rate in catalyzed diesel particulate filter. This study also shows characteristics of heat transfer in DPF when high temperature gas flows into the filter. Experiments reveal that the soot loading and mass flow rate affect characteristics pressure drop independently. Experiments also indicate that the amount of coating material has little influence on pressure drop with changes in soot loading and mass flow rate. However, increased catalyst coating may lead to the improved heat transfer which is efficiency to reduce thermal stress of the filter.

Preparation of Photosensitizer-Coated Ferrofluids and Fabrication of a Device for Photodynamic Therapy (광감제가 코팅된 자성유체의 제조와 광역학 치료용 장치의 구성)

  • Gwon, Sun-Gwang;Kim, Jong-O;Kim, Jong-Hui
    • Korean Journal of Materials Research
    • /
    • v.12 no.3
    • /
    • pp.215-219
    • /
    • 2002
  • For the purpose of annihilating tumor in body, hematoporphyrin as a photosensitizer was coated onto magnetic particles of $Fe_3O_4$ prepared by coprecipitation which could be concentrated around the tumor by magnetic field. The photosensitizer was applied differently before, during and after adsorbing the 1st surfactant on the particles. Its added amount was $5{\times}10^{-4}/mol$, and the coating reaction proceeded at temperatures of 60, 70 and 8$0^{\circ}C$. The amounts of photosensitizer coated on the magnetic particles were obtained by calculating an optical density with the maximum UV spectrum. As a result of the UV analysis, the coating amount of photosensitizer increased with higher reaction temperatures. When applied at 8$0^{\circ}C$ after adsorbing the 1st surfactant, the photosensitizer was coated with a maximum value of $3.8{\times}10^{-3}/mo1/$\ell$$. The TGA analysis revealed that the ferrofluids included the particles of 30.115 g/$\ell$. It was suggested that the magnetite particles was coated with photosensitizer of $1.26{\times}10^{-4}/mo1/g$. A small-sized device for magnetic field and light emission was designed, in which LED sheets coverts the permanent magnet of Nd-Fe-B. The LED sheet was connected in series circuit and also protected with a silicon tube. The power was supplied with rechargable battery of 9V and 100-120mA.

Friction Characteristics of Warm a Forging Lubricant Containing Nano Graphite Powder (나노분말이 함유된 온간단조용 윤활제 마찰특성)

  • Kim, D.W.;Kim, Y.R.;Lee, G.A.;Choi, H.J.;Yun, D.J.;Shin, Y.C.;Lee, J.K.;Lim, S.J.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.13-18
    • /
    • 2012
  • During warm forging, materials are formed in the temperature range of $300^{\circ}C\sim900^{\circ}C$. In this temperature range, the friction between the forging die and the material is very high and has a negative effect on the forming process causing severe die wear and possible defects in the component because of stick-slip. Thus, lubrication characteristics are a very important factor for productivity during warm forging. In this paper, ring compression experiments were conducted to estimate the friction factor between the die and the materials as the main factor in characterizing the lubricant. Also, ring tests using normal graphite power as a lubricant coating system were compared with tests using nano graphite powder. The results confirm that the nano graphite is superior to the normal graphite in view of its lubricating effect. In addition, the friction factor (m) was estimated with respect to the amount of the nano graphite content in the lubricant. With 10 % nano graphite the friction factor had the lowest value as compared to other amounts. It can be concluded that the amount of the nano graphite in the coating system can be optimized to obtain the best lubrication condition between the die and the material using ring test experiments.

Optical Characteristics of Phosphorescent Materials with Water-based Ceramics (축광세라믹스의 광학적 특성에 관한 연구)

  • Fujita Akihiro;Kagami Shinya;Hur Man-Sung;Jones Mark I
    • Fire Science and Engineering
    • /
    • v.19 no.4 s.60
    • /
    • pp.42-46
    • /
    • 2005
  • This study is intended to examine the degree of phosphorescent luminance in proportion to the amount of phosphorescent pigments in the ceramic based coating. The results of this study were that the degree of phosphorescent luminance was Increased in proportion to the amount of phosphorescent pigments in the ceramic based coatings. Samples with more than $20\%$ of phosphorescent pigments exceeded the Japanese Industrial Standard for security signs. Luminance levels 10 times greater than the KS and JIS standard were obtained with a concentration of $50\%$. The luminance increased initially with the number of applications of the ceramic based coating but there was no further increase for more than 4 applications. The water-based phosphorescent ceramics developed here are made entirely of inorganic materials and do not generate toxic gases. The optical characteristics of these materials makes them suitable for use in phosphorescent emergency exit signs in place of the traditionally used vinyl chloride materials.

Coating Properties of Single and Multi-Layer Graphene Oxide on a Polystyrene Surface (산화그래핀 층수에 따른 폴리스타이렌 표면 코팅 특성)

  • Lee, Jihoon;Park, Jaebum;Park, Danbi;Huh, Jeung Soo;Lim, Jeong Ok
    • Korean Journal of Materials Research
    • /
    • v.31 no.7
    • /
    • pp.420-426
    • /
    • 2021
  • Graphene, a new material with various advantageous properties, has been actively used in various fields in recent years. Applications of graphene oxide are increasing in combination with other materials due to the different properties of graphene oxide, depending on the number of single and multiple layers of graphene. In this study, single-layer graphene oxide and multi-layer graphene oxide are spray coated on polystyrene, and the physicochemical properties of the coated surfaces are characterized using SEM, Raman spectroscopy, AFM, UV-Vis spectrophotometry, and contact angle measurements. In single-layer graphene oxide, particles of 20 ㎛ are observed, whereas a 2D peak is less often observed, and the difference in surface height increases according to the amount of graphene oxide. Adhesion increases with an increase in graphene oxide up to 0.375 mg, but decreases at 0.75 mg. In multi-layer graphene oxide, particles of 5 ㎛ are observed, as well as a 2D peak. According to the amount of graphene oxide, the height difference of the surface increases and the adhesive strength decreases. Both materials are hydrophilic, but single-layer graphene oxide has a hydrophilicity higher than that of multi-layer graphene oxide. We believe that multi-layer graphene oxide and single-layer graphene oxide can be implemented based on the characteristics that make them suitable for application.

A Study on The Air Pollution Reduction Performance of Mortar Coated with Photocatalyst (광촉매를 코팅한 모르타르의 미세먼지 저감 성능 연구)

  • Seung-Jin Lee;Min-Ki Jeon;Seung-Tae Jeong;In-Hwan Yang
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.12 no.1
    • /
    • pp.94-101
    • /
    • 2024
  • In this paper, the performance of air pollution reduction by coating the photocatalyst solution on the mortar surface was analyzed to ensure the possibility of applying the photocatalyst to structures with a large specific surface area. The photocatalytic concentrations of the coating solution were set to 1.5 % and 3.0 %, and the types of binders were considered as experimental variables, such as ultra-high performance concrete (UHPC), ordinary portland cement (OPC), and blast furnace slag. As the photocatalyst concentration increases, the air pollution reduction performance increases. In addition, as a result of the air pollution reduction performance, the NOx concentration reduction rate was the highest for UHPC, and the air pollution reduction performance increased as the blast furnace slag was replaced. Therefore, the amount of TiO2 remaining on the surface varies depending on the density of the tissue due to the difference in particles caused by the difference in the amount of TiO2 remaining on the surface.

DYE SENSITIZED SOLAR CELLS WITH HIGH PHOTO-ENERGY CONVERSION -CONTROLL OF NANO-PARTICLE SURFACES-

  • Hayase, Shuzi
    • Proceedings of the KIEE Conference
    • /
    • 2006.04b
    • /
    • pp.52-56
    • /
    • 2006
  • Some of factors affecting photo-conversion efficiency of dye sensitized solar cells (DSCs) are discussed in terms of $TiO_2$ electrodes. The first topic is on the surface modification of $TiO_2$ nano-particles, which is associated with electron traps on the surface of $TiO_2$ nano-particles. The surface is modified with dye molecules under pressurized $CO_2$ atmosphere to increase the surface coverage of $TiO_2$ nano-particles with dye molecules. This increases Jsc because of an increase in the amount of dye molecules and a decrease in the amount of trapping sites on $TiO_2$ nano-particles. In addition, the decrease in the amount of trap sites increases Voc because decreases in Voc are brought about by the recombination of $I_2$ molecules with electrons trapped on the $TiO_2$ surfaces. Selective staining for tandem cells is proposed. The second topic is on the contact between a $SnO_2$/F transparent conductive layer (TCL) and nano-particles. Polishing the TCL surfaces with silica nano-particles increases the contact, resulting in Jsc increases. The third topic is the fabrication of ion-paths in $TiO_2$ layers. Electro-spray coating of $TiO_2$ nano-particles onto TCL is shown to be effective for fabricating ion-paths in $TiO_2$ layers, which increases Jsc.

  • PDF

Scuffing and Wear of the Vane/Roller Surfaces for Rotary Compressor Depending on Several Sliding Condition

  • Lee, Y.Z.;Oh, S.D.;Kim, J.W.;Kim, C.W.;Choi, J.K.;Lee, I.J.
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2002.10b
    • /
    • pp.227-228
    • /
    • 2002
  • One of the serious challenges in developing rotary compressor with HFC refrigerant is the prediction of scuffing times and wear amounts between vane and roller surface. In this study, the tribological characteristics of sliding surfaces using roller-vane geometry of rotary compressor were investigated. The sliding tests were carried out under various sliding speeds, normal loads and surface roughness. During the tests, friction force, wear scar width, time to failure, surface temperature, and surface roughness were monitored. Because severe wear was occurred on vane surface, TiN coating was applied on sliding surfaces to prolong the wear-life of vane-roller interfaces. From the sliding tests, it was found that there was the optimum initial surface roughness to break in and to prolong the wear life of sliding surfaces. Depending on load and speed, the protective layers, which were composed of metallic oxide and organic compound, were formed on sliding surfaces. Those would play an important role in the amount of friction and wear between roller and vane surfaces.

  • PDF

Effects of Pretreatment and Ag Coating Processes Conditions on the Properties of Ag-Coated Cu Flakes (Ag 코팅 Cu 플레이크의 제조에서 전처리 및 Ag 코팅 공정 변화의 효과)

  • Kim, Ji Hwan;Lee, Jong-Hyun
    • Korean Journal of Materials Research
    • /
    • v.24 no.11
    • /
    • pp.617-624
    • /
    • 2014
  • To elucidate the effects of a pretreatment process on the uniformity of Ag electroless plating on Cu flakes, pretreatment time was mainly considered with a mixed solution of 0.15 M ammonium hydroxide and 0.0375 M ammonium sulphate. Optical inspection of Ag-coated Cu flakes determined that the optimal pretreatment time is 120 s. Repetition of the sequence in which Ag plating was done immediately after the pretreatment of 120 s clearly enhanced the plating uniformity. Scanning electron microscopy revealed that holes were formed irregularly on some Cu flakes during the period from the asdropping of an Ag precursor solution to 5 min. The hole formation was judged to be due to continuous removal of Cu on the local surfaces by the repetitive formation and elimination of $Cu_2O$ or $Cu(OH)_2$ layers. However, the increase of the amount of Ag coating suppressed the hole creation and increasingly enhanced the antioxidant property.

Synthesis of Nickel Nanoparticle-adsorbed Aluminum Powders for Energetic Applications (니켈 나노입자가 흡착된 에너제틱용 고반응성 알루미늄 분말 합성)

  • Kim, Dong Won;Kwon, Gu Hyun;Kim, Kyung Tae
    • Journal of Powder Materials
    • /
    • v.24 no.3
    • /
    • pp.242-247
    • /
    • 2017
  • In this study, the electroless nickel plating method has been investigated for the coating of Ni nanoparticles onto fine Al powder as promising energetic materials. The adsorption of nickel nanoparticles onto the surface of Al powders has been studied by varying various process parameters, namely, the amounts of reducing agent, complexing agent, and pH-controller. The size of nickel nanoparticles synthesized in the process has been optimized to approximately 200 nm and they have been adsorbed on the Al powder. TGA results clearly show that the temperature at which oxidation of Al mainly occurs is lowered as the amount of Ni nanoparticles on the Al surface increases. Furthermore, the Ni-plated Al powders prepared for all conditions show improved exothermic reaction due to the self-propagating high-temperature synthesis (SHS) between Ni and Al. Therefore, Al powders fully coated by Ni nanoparticles show the highest exothermic reactivity: this demonstrates the efficiency of Ni coating in improving the energetic properties of Al powders.