• 제목/요약/키워드: coating amount

검색결과 587건 처리시간 0.03초

Deposition of (Ti, Cr, Zr)N-$MoS_{2}$ Thin Films by D.C. Magnetron Sputtering

  • Kim, Sun-Kyu;Vinh, Pham-Van
    • 한국표면공학회지
    • /
    • 제39권6호
    • /
    • pp.263-267
    • /
    • 2006
  • As technology advances, there is a demand for development of hard solid lubricant coating. (Ti, Cr, Zr)N-$MoS_2$ films were deposited on AISI H13 tool steel substrate by co-deposition of $MoS_2$ with (Ti, Cr, Zr)N using a D.C. magnetron sputtering process. The influence of the $N_2Ar$ gas ratio, the amount of $MoS_2$ in the films and the bias voltage on the mechanical and structural properties of the films were investigated. The highest hardness level was observed at the $N_2/Ar$ gas ratio of 0.3. Hardness of the films did not change much with the increase of the $MoS_2$ content in the films. As the substrate bias potential was increased, hardness level of the film reached maximum at -150 V. Surface morphology of these films indicated that high hardness was attributed to the fine dome structure.

A Fuel Feasibility Study of Sewage Sludge by Melting of Thermoplastic Polyethylene

  • Lee, Byeong-Kyu;Jeong, Wang-Seok
    • 한국환경과학회지
    • /
    • 제19권1호
    • /
    • pp.9-16
    • /
    • 2010
  • This pilot study evaluated fueling feasibility of sewage sludge, which contains a large amount of water content, by applying melting of thermoplastic polyethylene (PE). This study has identified a simultaneous achievement of drying and heating value improvement of the sewage sludge. The sewage sludge collected from a sewage sludge treatment plant during a winter period had a water content of 83.7 wt%, a combustible volatile content of 12.5 wt%, and an ash content of 3.8 wt%. The higher heating value (HHV) of the dried sewage sludge, before impregnation or coating of PE, was 4,600 kcal/kg. The collected sewage sludge was immersed into the melted PE solution, which had a HHV of 11,070 kcal/kg, and kept immersing with increasing reaction time. As the reaction (immersing or coating or impregnation) time increased, the water content of the sludge decreased. However, the HHV of the sludge increased with increasing the reaction time. The HHVs of the sewage sludge immersed or dipped into the melted PE solution for 15 min ranged from 6,780 to 8,170 kcal/kg with water content less than 7 wt%. This result indicates the melted PE solution can be utilized as an improvement technology for dryness and heating value of the sewage sludge with high water content. The sewage sludge impregnated or coated with melted PE can be utilized as potential fuel or energy resources.

Effect of ceramic powder addition on the insulating properties of polymer layer prepared by dip coating method

  • Kim, S.Y.;Lee, J.B.;Kwon, B.G.;Hong, G.W.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제16권1호
    • /
    • pp.14-18
    • /
    • 2014
  • The mechanical, electrical and thermal characteristics of insulating materials may significantly affect the performance and reliability of electrical devices using superconductors. General method to provide insulating layer between coated conductors is wrapping coated conductor with Kapton tape. But uniform and compact wrapping without failure or delamination in whole coverage for long length conductor is not a simple task and need careful control. Coating of insulating layer directly on coated conductor is desirable for providing compact insulating layer rather than wrapping insulating layers around conductor. Ceramic added polymer has been widely used as an insulating material for electric machine because of its good electrical insulating properties as well as excellent heat resistance and fairy good mechanical properties. The insulating layer of coated conductor should have high breakdown voltage and possesses suitable mechanical strength and maintain adhesiveness at the cryogenic temperature where it is used and withstand stress from thermal cycling. The insulating and mechanical properties of polymer can be improved by adding functional filler. In this study, insulating layer has been made by adding ceramic particles such as $SiO_2$ to a polymer resin. The size, amount and morphology of added ceramic powder was controlled and their effect on dielectric property of the final composite was measured and discussed for optimum composite fabrication.

Challenges in the Production of Thin Coatings at High Line Speed

  • Michel, Dubois;Luc, Warichet;Jose, Callegari
    • Corrosion Science and Technology
    • /
    • 제9권1호
    • /
    • pp.1-7
    • /
    • 2010
  • Cost reduction of products is and will always be a key objective of industrials. However, it is well identified that the wiping process reaches its limits at high line speed in general and especially thin coatings. If wiping models predict that it is possible to reach 32-37 g/$m^2$ of pure Zinc at 180 m/min provided the nozzle to strip distance can be reduced to 6mm, the possibility to reach that process window industrially with sufficient robustness is debated. 3 key problems are reviewed and analyzed: Zinc splashing and liquid drop emissions of various forms, the production of skimming and the noise generated by the nozzles. The available data and models are firstly used to predict phenomena. Secondly, videos and pictures from the lines showing what really happens on the edges especially in case of a strip width change are analyzed. Whereas the predicted level of skimming to remove from the pot is expected very high, it turns out that the target may be very close to the full splashing phenomena and that the most critical industrial situation is related to strip specification changes. It is then expected that the industrial feasibility of the 32-37 g/$m^2$ at 180 m/min will depend strongly on the amount of incoming strip with the same width that can be processed continuously.

A Study of Optimizing Cathodic Protection in Comparison of Design Methodologies

  • Choi, Young-Kwan;Choi, Sang-Yule;Shin, Myong-Chul
    • 조명전기설비학회논문지
    • /
    • 제24권11호
    • /
    • pp.23-29
    • /
    • 2010
  • The principal factor determining an optimum design method for cathodic protection is finding the protection current for preventing the corrosion of existing, already laid pipe. Some factors currently used to test designs include the sizes and lengths of pipes, soil resistivity, and the coating damage rate. We believe this method and current formulae are not optimum due to the uncertainty of determining the coating damage rate and the corrosion protection current's density. This paper analyzes the amount of protection current obtained by performing a temporary current test using data describing existing laid pipe. We then propose determining the corrosion protection current by using the temporary current test after modifying the formula. In addition, we suggest a way to choose optimized cathodic protection and the process of design by executing the design and taking account of such factors as a site condition of 34km-long non-protected water supply pipe lines (stages I and II) in ${\bigcirc}{\bigcirc}$ region, climate, interferences, and durability.

실리카가 코팅된 양자점의 코팅두께에 따른 광 특성 변화 (The Synthesis and Optical Properties of Silica Coated CdSe/ZnS QDs)

  • 이지혜;신현호;이종흔;현상일;구은회
    • 한국전기전자재료학회논문지
    • /
    • 제26권3호
    • /
    • pp.221-226
    • /
    • 2013
  • The water soluble quantum dots (QDs) are synthesized by the phase transfer and silica coating reaction. The photoluminescence intensity of silica-coated QDs are mainly affected by the amount of phase transfer agent, SDS (sodium dodecyl sulfate), and the maximum value is obtained at the cmc (critical micell concentration) concentration of SDS in the phase transfer reaction. Based on fluorescence spectra and field emission transmission electron microscope (FETEM), the energy transfer rate by forster resonance energy transfer (FRET) is increasing with the thickness of the silica shell coated on CdSe/ZnS QDs.

Characterization of Microstructure, Hardness and Oxidation Behavior of Carbon Steels Hot Dipped in Al and Al-1 at% Si Molten Baths

  • Trung, Trinh Van;Kim, Sun Kyu;Kim, Min Jung;Kim, Seul Ki;Bong, Sung Jun;Lee, Dong Bok
    • 대한금속재료학회지
    • /
    • 제50권8호
    • /
    • pp.575-582
    • /
    • 2012
  • Medium carbon steel was aluminized by hot dipping into molten Al or Al-1 at% Si baths. After hot-dipping in these baths, a thin Al-rich topcoat and a thick alloy layer rich in $Al_5Fe_2$ formed on the surface. A small amount of FeAl and $Al_3Fe$ was incorporated in the alloy layer. Silicon from the Al-1 at% Si bath was uniformly distributed throughout the entire coating. The hot dipping increased the microhardness of the steel by about 8 times. Heating at $700-1000^{\circ}C$, however, decreased the microhardness through interdiffusion between the coating and the substrate. The oxidation at $700-1000^{\circ}C$ in air formed a thin protective ${\alpha}-Al_2O_3$ layer, which provided good oxidation resistance. Silicon was oxidized to amorphous silica, exhibiting a glassy oxide surface.

폴리인산 암모늄과 HMDI 기반으로 제조된 수분산 폴리우레탄 수지의 물리적 특성 연구 (Physical Properties of Water Dispersion Polyurethane Resin Based on Ammonium Poly Phosphate and HMDI)

  • 이주엽
    • 한국응용과학기술학회지
    • /
    • 제37권6호
    • /
    • pp.1619-1626
    • /
    • 2020
  • 본 연구에서는 폴리인산암모늄 인산염과 HMDI로 합성된 수분산 폴리우레탄수지의 물리적 특성을 필름 시료와 피혁(Full-Grain) 표면에 코팅을 하여 물리적 특성 변화를 연구하였다. 내용제성은 모든 시료에서 변확 없음을 확인 할수 있었으며, 인장강도의 경우 폴리인산암모늄이 가장 많이 함유된 DPU-AP3(1.887 kgf/㎟)가 가장 낮은 물성을 보였다. 연실율은 폴리인산암모늄 많이 함유된 시료가 548%로 측정되었다. 내마모성은 폴리인산암모늄이 많이 함유된 시료가 548 mg.loss로 측정되어 폴리인산 암모늄과 수분산 폴리우레탄의 블랜딩된 수지의 물성변화가 확인되었다.

양극산화 방법을 이용한 기능성 알루미늄 3003 합금의 표면 특성 및 부식 거동 연구 (A Study on the Surface Properties and Corrosion Behavior of Functional Aluminum 3003 Alloy using Anodization Method)

  • 김지수;정찬영
    • Corrosion Science and Technology
    • /
    • 제21권4호
    • /
    • pp.290-299
    • /
    • 2022
  • Anodizing is an electrochemical surface treatment method conferring corrosion resistance and durability by forming a thick anodization film on the metal surface. Aluminum has a long service life and high thermal conductivity and formability, as well as excellent corrosion resistance. Aluminum 3003 alloy has improved formability, strength, and corrosion resistance due to the addition of a small amount of manganese. However, corrosion occurs in seawater and environments polluted with corrosion-inducing substances, which reduce corrosion resistance. Therefore, it is necessary to artificially form a thick anodized film to improve corrosion resistance. In this study, the anodization treatment time was 4 minutes, and voltages of 10 V, 20 V, 30 V, 40 V, 50 V, 60 V, 70 V, 80 V, 90 V, and 100 V were applied. The thickness and pore size of the oxide film increased according to the applied voltage. A barrier film was formed under voltage conditions from 10 V to 50 V, and a porous film was formed under voltage conditions from 60 V to 100 V. After anodizing, coating was applied. Wettability and corrosion resistance were observed before and after coating according to the surface shape and thickness of the oxide film.

Experimental study on Microbially Induced Calcite Precipitation for expansive soil stabilization

  • Zheng Lu;Yu Qiu;Jie Liu;Chengcheng Yu; Hailin Yao
    • Geomechanics and Engineering
    • /
    • 제32권1호
    • /
    • pp.85-96
    • /
    • 2023
  • Microbially induced carbonate precipitation (MICP) is extensively discussed as a promising topic for ground stabilization. The practical effect of stabilizing the expansive soil is presented in this paper with a logical process from the bacterial activity to the treatment technology. Temperature, pH, shaking frequency, and inoculation amount are discussed to evaluate the bacterial activity. The physic-mechanic properties are also evaluated to discuss the effect of the MICP process on expansive soil. Results indicate that the MICP method achieves the mitigation of expansion. The treated soil has a low proportion of fine particles (< 5 ㎛), the plasticity index significantly decreases, and strength values improve much. MICP process has a significant cementation effect on the soil matrix. Moreover, the infiltration model test presents the coating effect on the topsoil. According to the relation between the CaCO3 content and the treatment effect, the topsoil has better treatment than the deeper soil.