DOI QR코드

DOI QR Code

Experimental study on Microbially Induced Calcite Precipitation for expansive soil stabilization

  • Zheng, Lu (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences) ;
  • Yu, Qiu (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences) ;
  • Jie, Liu (Transportation Planning Survey and Design Institute Co., Ltd.) ;
  • Chengcheng, Yu (CCCC Second Harbor Engineering Co., Ltd.) ;
  • Hailin, Yao (State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences)
  • Received : 2022.06.09
  • Accepted : 2022.12.24
  • Published : 2023.01.10

Abstract

Microbially induced carbonate precipitation (MICP) is extensively discussed as a promising topic for ground stabilization. The practical effect of stabilizing the expansive soil is presented in this paper with a logical process from the bacterial activity to the treatment technology. Temperature, pH, shaking frequency, and inoculation amount are discussed to evaluate the bacterial activity. The physic-mechanic properties are also evaluated to discuss the effect of the MICP process on expansive soil. Results indicate that the MICP method achieves the mitigation of expansion. The treated soil has a low proportion of fine particles (< 5 ㎛), the plasticity index significantly decreases, and strength values improve much. MICP process has a significant cementation effect on the soil matrix. Moreover, the infiltration model test presents the coating effect on the topsoil. According to the relation between the CaCO3 content and the treatment effect, the topsoil has better treatment than the deeper soil.

Keywords

Acknowledgement

This work was supported by the National Natural Science Foundation of China (42077262, 42077261 and 41972294)

References

  1. Achal, V., Pan, X., Zhang, D. and Fu, Q. (2012), "Bioremediation of Pb-contaminated soil based on microbially induced calcite precipitation", J. Microbiol. Biotechnol., 22(2), 244-247. https://doi.org/10.4014/jmb.1108.08033.
  2. Al Qabany, A. and Soga, K. (2013), "Effect of chemical treatment used in MICP on engineering properties of cemented soils", Geotechnique, 63(4), 331-339. https://doi.org/10.1680/geot.SIP13.P.022.
  3. Al Qabany, A., Soga, K. and Santamarina, C. (2012), "Factors affecting efficiency of microbially induced calcite precipitation", J. Geotech. Geoenviron. Eng., 138(8), 992-1001. https://doi.org/10.1061/(asce)gt.1943-5606.0000666.
  4. Anbu, P., Kang, C.H., Shin, Y.J. and So, J.S. (2016), "Formations of calcium carbonate minerals by bacteria and its multiple applications", Springerplus, 5(https://doi.org/10.1186/s40064-016-1869-2.
  5. Atahu, M.K., Saathoff, F. and Gebissa, A. (2019), "Strength and compressibility behaviors of expansive soil treated with coffee husk ash", J. Rock Mech. Geotech. Eng., 11(2), 337-348. https://doi.org/10.1016/j.jrmge.2018.11.004.
  6. Castro-Alonso, M.J., Montanez-Hernandez, L.E., Sanchez-Munoz, M.A., Macias Franco, M.R., Narayanasamy, R. and Balagurusamy, N. (2019), "Microbially induced Calcium Carbonate Precipitation (MICP) and its potential in bioconcrete: Microbiological and molecular concepts", Front. Mater., 6. https://doi.org/10.3389/fmats.2019.00126.
  7. Chen, X., Li, J., Xue, Q., Huang, X., Liu, L. and Poon, C.S. (2020), "Sludge biochar as a green additive in cement-based composites: Mechanical properties and hydration kinetics", Constr. Build. Mater., 262. https://doi.org/10.1016/j.conbuildmat.2020.120723.
  8. Cheng, L., Cord-Ruwisch, R. and Shahin, M.A. (2013), "Cementation of sand soil by microbially induced calcite precipitation at various degrees of saturation", Can. Geotech. J., 50(1), 81-90. https://doi.org/10.1139/cgj-2012-0023.
  9. Cheng, L., Shahin, M. A. & Chu, J. (2019), "Soil bio-cementation using a new one-phase low-pH injection method", Acta Geotech., 14(3), 615-626. https://doi.org/10.1007/s11440-018-0738-2
  10. Choi, S.G., Wang, K., Wen, Z. and Chu, J. (2017), "Mortar crack repair using microbial induced calcite precipitation method", Cement Concrete Compos., 83, 209-221. https://doi.org/10.1016/j.cemconcomp.2017.07.013.
  11. Chuo, S.C., Mohamed, S.F., Setapar, S.H.M., Ahmad, A., Jawaid, M., Wani, W.A., Yaqoob, A.A. and Ibrahim, M.N.M. (2020), "Insights into the current trends in the utilization of bacteria for microbially induced calcium carbonate precipitation", Materials, 13(21), https://doi.org/10.3390/ma13214993.
  12. DeJong, J.T., Soga, K., Banwart, S.A., Whalley, W.R., Ginn, T.R., Nelson, D.C., Mortensen, B.M., Martinez, B.C. and Barkouki, T. (2011), "Soil engineering in vivo: harnessing natural biogeochemical systems for sustainable, multi-functional engineering solutions", J R Soc Interface, 8(54), 1-15. https://doi.org/10.1098/rsif.2010.0270.
  13. Fazal, E.J., Xu, Y.F., Jamhiri, B. and Memon, S.A. (2020), "On the recent trends in expansive soil stabilization using Calcium-Based Stabilizer Materials (CSMs): A comprehensive review", Adv. Mater. Sci. Eng., 2020, 1510969. https://doi.org/10.1155/2020/1510969.
  14. GB/T50123 (2019), "Standard for geotechnical testing method", Ministry of Transport of the People's Republic of China, Beijing.,
  15. Gibbs, H.J. (1977), "Foundations on expansive soils", Earth Sci. Rev., 13(1), 87-88. https://doi.org/10.1016/0012-8252(77)90085-X.
  16. Hang, L., Gao, Y., He, J. and Chu, J. (2019), "Mechanical behaviour of biocemented sand under triaxial consolidated undrained or constant shear drained conditions", Geomech. Eng., 17(5), 497-505. https://doi.org/10.12989/gae.2019.17.5.497.
  17. Ikeagwuani, C.C. and Nwonu, D.C. (2019), "Emerging trends in expansive soil stabilisation: A review", J. Rock Mech. Geotech. Eng., 11(2), 423-440. https://doi.org/10.1016/j.jrmge.2018.08.013.
  18. Jiang, N.J., Wang, Y.J., Chu, J., Kawasaki, S., Tang, C.S., Cheng, L., Du, Y.J., Shashank, B.S., Singh, D.N., Han, X.L. and Wang, Y.Z. (2021), "Bio-mediated soil improvement: An introspection into processes, materials, characterization and applications", Soil Use Manage., 38(1), 68-93. https://doi.org/10.1111/sum.12736.
  19. Jongvivatsakul, P., Janprasit, K., Nuaklong, P., Pungrasmi, W. and Likitlersuang, S. (2019), "Investigation of the crack healing performance in mortar using microbially induced calcium carbonate precipitation (MICP) method", Constr. Build. Mater., 212, 737-744. https://doi.org/10.1016/j.conbuildmat.2019.04.035.
  20. Kumar, S.A. and Sujatha, E.R. (2020), "Performance evaluation of beta-glucan treated lean clay and efficacy of its choice as a sustainable alternative for ground improvement", Geomech. Eng., 21(5), 413-422. https://doi.org/10.12989/gae.2020.21.5.413.
  21. Li, M., Cheng, X. and Guo, H. (2013), "Heavy metal removal by biomineralization of urease producing bacteria isolated from soil", Int. Biodeterior. Biodegrad., 76, 81-85. https://doi.org/10.1016/j.ibiod.2012.06.016.
  22. Liu, B., Zhu, C., Tang, C.S., Xie, Y.H., Yin, L.Y., Cheng, Q. and Shi, B. (2020), "Bio-remediation of desiccation cracking in clayey soils through microbially induced calcite precipitation (MICP)", Eng. Geol., 264. https://doi.org/10.1016/j.enggeo.2019.105389
  23. Mohanty, S. K., Pradhan, P. K. & Mohanty, C. R. (2017), "Stabilization of expansive soil using industrial wastes", Geomechanics and Engineering, 12(1), 111-125. https://doi.org/10.12989/gae.2017.12.1.111.
  24. Nowamooz, H., Jahangir, E. and Masrouri, F. (2013), "Volume change behaviour of a swelling soil compacted at different initial states", Eng. Geol., 153, 25-34. https://doi.org/10.1016/j.enggeo.2012.11.010.
  25. Pan, X., Chu, J., Yang, Y. and Cheng, L. (2020), "A new biogrouting method for fine to coarse sand", Acta Geotech., 15(1), 1-16. https://doi.org/10.1007/s11440-019-00872-0.
  26. Santhosh K. Ramachandran, V.R. and Sookie, S.B. (2001), "Remediation of concrete using microorganisms", ACI Mater. J., 98(1), https://doi.org/10.14359/10154.
  27. Soltani, A., Deng, A., Taheri, A. and Sridharan, A. (2019), "Swell-shrink-consolidation behavior of rubber-reinforced expansive soils", Geotech. Test. J., 42(3), 761-788. https://doi.org/10.1520/gtj20170313.
  28. Whiffin, V.S., van Paassen, L.A. and Harkes, M.P. (2007), "Microbial carbonate precipitation as a soil improvement technique", Geomicrobiol. J., 24(5), 417-423. https://doi.org/10.1080/01490450701436505.
  29. Wu, S., Li, B. and Chu, J. (2021), "Stress-dilatancy behavior of MICP-treated sand", Int. J. Geomech., 21(3), https://doi.org/10.1061/(asce)gm.1943-5622.0001923.
  30. Zhang, T., Yang, Y.L. and Liu, S.Y. (2020), "Application of biomass by-product lignin stabilized soils as sustainable Geomaterials: A review", Sci. Total Environ., 728. https://doi.org/10.1016/j.scitotenv.2020.138830.