• Title/Summary/Keyword: coastal seawater

Search Result 469, Processing Time 0.023 seconds

Accelerated Laboratory Experiments Investigating Weathering of Volcanic Rocks from Yuchon Group Exposed to Seawater and Acidified Distilled Water (실내인공풍화가속실험을 통한 해수와 산성증류수에 대한 유천층군 화산암의 풍화 특성 연구)

  • Ik Woo
    • The Journal of Engineering Geology
    • /
    • v.34 no.1
    • /
    • pp.25-38
    • /
    • 2024
  • Laboratory tests of accelerated artificial weathering compared the effects of seawater and acidified distilled water on rock weathering. The experiments simulated chemical and physical weathering of five different types of volcanic rock by applying 45 freeze-thaw cycles using seawater and acidified distilled water (pH 3), both at 70℃. The physical properties and uniaxial compressive strength (UCS) of the rocks were measured after 15 and 45 cycles of artificial weathering. Most of degradation of physical properties appeared within the first 15 cycles, and acidified distilled water had a greater effect than seawater. Analysis of variance (ANOVA) statistically evaluated the differences in UCS of the different rock types during the tests. The rate of UCS reduction after 45 cycles was similar across the samples, being independent of the rock type and the trend of changes in physical properties. In contrast to the changes in the physical properties, the UCS was more affected by seawater than by acidified distilled water.

Distribution and Biodegradation of Crude oil-Degrading Bacteria in P'ohang Coastal Area (포항근해 원유분해세균의 분포 및 원유분해능)

  • 이창호;권기석;서현호;김희식;오희목;윤병대
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.2
    • /
    • pp.35-42
    • /
    • 1996
  • Seawater samples were collected from P'ohang coastal area during April 1995 - January 1996. The distribution of total heterotrophic bacteria and crude oil-degrading bacteria (CDB) were studied. In addition, biodegradation of crude oil was investigated through mono and mixed culture. The heterotrophic bacterial distribution was in the range of 4.1 $\times$ $10^4$- 1.2 $\times$ $10^5$ CFU/$m\ell$, respectively. The percent of crude oil-degrading bacteria against total heterotrophic bacteria was 0.05-0.54% which was lower than other marine samples reported. Therefore it could be suggested that the distribution of crude oil-degrading bacteria in the seawater of P'ohang coastal area was highly affected by presence of petroleum hydrocarbon. Taxonomical characteristics of 26 isolates were investigated. The results of identification were showed 7 genera which were Acinetobacter spp., Bacillus spp., Citrobacter spp., Micrococcus spp., Moraxella spp., Rhodococcus spp., and Serratia spp. Appearance of Enterobacteriaceae indicated that the seawater was polluted with wastewater. Also genus of Bacillus had predominant in CDB on P'ohang coastal area. In flask culture, biodegradation of crude oil was enhanced by addition of mixed culture of CDB.

  • PDF

A Study on the Compressive Properties of Seawater-absorbed Carbon-Epoxy Composites - Hydrostatic Pressure Effect (해수가 흡수된 Carbon-Epoxy 적층복합재의 압축특성에 대한 연구- 정수압력 영향)

  • Lee Ji Hoon;Rhee Kyong Yop;Kim Hyun ju
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.16 no.4
    • /
    • pp.191-195
    • /
    • 2004
  • This study investigated the effect of deep-sea environment on the compressive characteristics of polymer matrix composite. The specimens used in the experiment were thick Carbon-Epoxy composites that were made from Carbon-Epoxy prepregs. The specimens were immersed into seawater for thirteen months. The seawater content at saturation was about 1.2% of the specimen weight. The hydrostatic pressures applied were 0.1 MPa, 100 MPa, 200 MPa, and 270 MPa. It was found that the compressive elastic modulus increased about 10% as the hydrostatic pressure increased from 0.1 MPa to 200 MPa. The modulus increased additional 2.3% as the pressure increased to 270 MPa. It was also found that compressive fracture strength and compressive fracture strain increased with pressure in a linear behavior. Compressive fracture strength increased 28% and compressive fracture strain increased 8.5% as the hydrostatic pressure increased from 0.1 MPa to 270 MPa.

Wave Control by an Array of N Bottom-Mounted Porous Cylinders (N개의 투과성 원기둥 배열에 의한 파랑제어)

  • 조일형
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.4
    • /
    • pp.232-241
    • /
    • 2003
  • The interaction of incident monochromiatic waves with N bottom-mounted porous circular cylinders is investigated in the frame of three-dimensional linear potential theory. The fluid domain is divided into N+l regions i.e. a single exterior region and N interior regions, and the diffraction potential in each fluid region is expressed by an eigenfunction expansion method (Williams and Li,2000). The analytic results show that the porous structure reduces both the wave forces and the run-up wave around the cylinder. To verify the developed model, the systematic model test with a line array of porous cylinders is conducted at the wave tank (30m$\times$7m$\times$1.5m). The analytic results are in good agreement with the experimental results within measured frequency range. It is concluded that the breakwater constructed with an array of porous circular cylinders shows the performance of an effective wave barrier together with the seawater-exchange effect and is considered to have vast potentials for the use of seawater-exchanging breakwater in the future.

Spatial and Temporal Variability of Residual Current and Salinity Distribution according to Freshwater Discharge during Monsoon in Nakdong River Estuary (낙동강 하구역의 홍수기 방류에 의한 수로별 유속 잔차 및 염분 분포)

  • Song, Jin Il;Yoon, Byung Il;Kim, Jong-Wook;Lim, Chae Wook;Woo, Seung-Buhm
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.26 no.3
    • /
    • pp.184-195
    • /
    • 2014
  • After building the dyke in Nakdong River Estuary, mixing of freshwater inflow to ocean and seawater to upstream is controlled by operating the sluice gates. Mixing and convergence of seawater and freshwater by opening the sluice gates, have a major impact on the circulation of seawater in the Nakdong River Estuary. Field measurement was carried out to study the characteristics of the estuary flow and environment of each channel of the Nakdong River Estuary. Vertical salinity distribution and residual current is different from each channel by the river discharge and topographic changes.

Structural Re-design of Seawater Pump Impeller Shaft (해수펌프 임펠러 샤프트의 구조 재설계)

  • Cho, Kyu-Nam
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.22 no.5
    • /
    • pp.326-332
    • /
    • 2010
  • Critical response of seawater pump impeller shaft structure to various exciting loads is a fundamental factor in re-designing of the structure after its functional failure. In this paper, a typical case of the shaft structure's failure is investigated for re-designing purposes. Failure causes of interest are excessive bending moment, fatigue loads and dynamic resonance due to relevant motor rotation and unbalancing of the rotation loads. Static analyses of shaft structure under the conditions of concerned loads are carried out, followed by a dynamic investigation of the effects of resonance between the shaft and the motor on the structure. The relevant structural analyses are carried out using the Finite Element Methods combined with ANSYS code. Based on these, the primary cause for the shaft's structural failure is obtained. It is found that the change of the bending stiffness of the shaft is the primary concern in the re-designing process. A guideline for the re-design process of the seawater pump shaft structure is established, and a re-design scheme of the structure is proposed.

Three-Dimensional Numerical Simulation of Impacts of Fault Existence on Groundwater Flow and Salt Transport in a Coastal Aquifer, Buan, Korea (한국 부안 지역 해안 대수층 내의 지하수 유동 및 염분 이동에 대한 단층 존재의 영향 삼차원 수치 모의)

  • Park, Ju-Hyun;Kihm, Jung-Hwi;Kim, Han-Tae;Kim, Jun-Mo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.33-46
    • /
    • 2008
  • A series of three-dimensional numerical simulations using a generalized multidimensional hydrodynamic dispersion numerical model is performed to simulate effectively and to evaluate quantitatively impacts of fault existence on densitydependent groundwater flow and salt transport in coastal aquifer systems. A series of steady-state numerical simulations with calibration is performed first for an actual coastal aquifer system which contains a major fault. A series of steadystate numerical simulations is then performed for a corresponding coastal aquifer system which does not have such a major fault. Finally, the results of both numerical simulations are compared with each other and analyzed. The results of the numerical simulations show that the major fault produces hydrogeologically significant heterogeneity and true anisotropy in the actual coastal aquifer system, and density-dependent groundwater flow, salt transport, and seawater intrusion patterns in the coastal aquifer systems are intensively and extensively dependent upon the existence or absence of such a major fault. Especially, the major fault may act as a pathway for groundwater flow and salt transport along the direction parallel to its plane, while it may also behave as a barrier against groundwater flow and salt transport along the direction perpendicular to its plane.

Three-Dimensional Numerical Simulation of Impacts of Layered Heterogeneity and Groundwater Pumping Schemes on Seawater Intrusion (해수 침투에 대한 층상 불균질성 및 지하수 양수 방식의 영향 삼차원 수치 모의)

  • Park, Hwa-Seok;Kihm, Jung-Hwi;Yum, Byoung-Woo;Kim, Jun-Mo
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.4
    • /
    • pp.8-21
    • /
    • 2008
  • A series of three-dimensional numerical simulations using a hydrodynamic dispersion numerical model is performed to analyze quantitatively impacts of layered heterogeneity of geologic media and groundwater pumping schemes on groundwater flow and salt transport in coastal aquifer systems. A two-layer heterogeneous coastal aquifer system composed of a lower sand layer (aquifer) and an upper clay layer (aquitard) and a corresponding single-layer homogeneous coastal aquifer system composed of an equivalent lumped material are simulated to evaluate impacts of layered heterogeneity on seawater intrusion. In addition, a continuous groundwater pumping scheme and two different periodical groundwater pumping schemes, which withdraw the same amount of groundwater during the total simulation time, are applied to the above two coastal aquifer systems to evaluate impacts of groundwater pumping schemes on seawater intrusion. The results of the numerical simulations show that the periodical groundwater pumping schemes have more significant adverse influences on groundwater flow and salt transport not only in the lower sand layer but also in the upper clay layer, and groundwater salinization becomes more intensified spatially and temporally as the pumping intensity is higher under the periodical groundwater pumping schemes. These imply that the continuous groundwater pumping scheme may be more suitable to minimize groundwater salinization due to seawater intrusion. The results of the numerical simulations also show that groundwater salinization in the upper clay layer occurs significantly different from that in the lower sand layer under the periodical groundwater pumping schemes. Such differences in groundwater salinization between the two adjacent layers may result from layered heterogeneity of the layered coastal aquifer system.

A Study on Behaviour Characteristics Analysis and Materials Design Strength Decision of the Coastal Structures under Sea Wave Loads (파랑하중을 받는 해안구조물의 거동특성 분석 및 재료 설계강도 산정에 관한 연구)

  • Chung, Jeeseung;Moon, Ingi;Yoo, Chanho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.57-66
    • /
    • 2013
  • Coastal structures are functioning in complex natural phenomena such as wave, tide, seawater penetration and abrasion. So the behavior of the coastal structures material is important, because coastal structure material is directly linked to stability of the coastal structures. For this reason, to determine the behaviour characteristics, material design standard is required on the coastal structure under sea wave load. Especially, identification on the behavior of the coastal structure has not been investigated yet properly considering interaction structure and sea wave load. In this study, to identify the behaviour characteristics of the coastal structure caused by waves, the behavior of the coastal structure depending on the magnitude of the wave loads was intensively analyzed.

Evaluation of the Possibility of Developing Organic Matter Indicators in Coastal Environments: Utilization of Dissolved Organic Carbon and Fluorescent Dissolved Organic Matter (연안환경에서 유기물 지표 개발을 위한 가능성 평가: 용존유기탄소와 형광용존유기물질 활용)

  • Lee, Min-Young;Yang, Kyungsun;Kim, Sunchan;Kim, Tae-Hoon
    • Ocean and Polar Research
    • /
    • v.43 no.2
    • /
    • pp.65-72
    • /
    • 2021
  • In order to evaluate the dissolved organic carbon (DOC) and fluorescent dissolved organic matter (FDOM), as indicators of organic matter in the coastal environments, we measured the concentrations of DOC, FDOM, and chemical oxygen demand (COD) in saline groundwater (Woljeong, Pyoseon, and Hwasun beaches) and coastal seawater (Haengwon, Gwideok, Pyoseon, and Yeongnak) in Jeju, Korea. The highest concentrations of DOC and COD in groundwater were found in Woljeong and Pyoseon, and those in coastal water were observed in Haengwon and Pyoseon, indicating that the higher concentrations of DOC and COD seem to be associated with saline groundwater-driven dissolved organic matter (DOM) and/or biogeochemical processes. According to origin and optical properties of DOM using FDOM as a tracer, proportion of humic-like FDOM, more refractory DOM, was relatively greater in the groundwater than in the coastal water. With regard to this result, there was no relationship between DOC and COD in groundwater, while DOC showed a good positive correlation (r2 = 0.66) with COD in coastal water. This result indicates that COD as an indicator of assessment of DOM has a limitation in which it is difficult to quantify refractory DOM. Although DOC is a potential alternative to COD in the coastal environments, particulate organic carbon cannot be negligible due to relatively higher concentration compared to the open ocean. Therefore, the use of total organic carbon (TOC) as a replacement of COD in the coastal ocean is important, and the evaluation criterion of the TOC is necessary in order to evaluate of organic matter indicator in the various coastal environments.