• 제목/요약/키워드: coalescence process

검색결과 88건 처리시간 0.025초

분말사출성형한 W-15 wt%Cu 나노복합분말의 고상소결에 미치는 잔류불순물의 영향 (Effect of Residual Impurities on Solid State Sintering of the Powder Injection Molded W-15 wt%Cu Nanocomposite Powder)

  • 윤의식;이재성;윤태식
    • 한국분말재료학회지
    • /
    • 제9권4호
    • /
    • pp.235-244
    • /
    • 2002
  • The effects of residual impurities on solid state sintering of the powder injection molded (PIMed) W-15wt%Cu nanocomposite powder were investigated. The W-Cu nanocomposite powder was produced by the mech-ano-chemical process consisting of high energy ball-milling and hydrogen reduction of W blue powder-cuO mixture. Solid state sintering of the powder compacts was conducted at $1050^{\circ}C$ for 2~10 h in hydrogen atmosphere. The den-sification of PIM specimen was slightly larger than that of PM(conventional PM specimen), being due to fast coalescence of aggregate in the PIM. The only difference between PIM and PM specimens was the amount of residual impurities. The carbon as a strong reduction agent effectively reduced residual W oxide in the PIM specimen. The $H_2O$ formed by $H_2$ reduction of oxide disintegrated W-Cu aggregates during removal process, on the contrary to this, micropore volume rapidly decreased due to coalescence of the disintegrated W-Cu aggregates during evolution of CO.It can be concluded that the higher densification was due to the earlier occurred Cu phase spreading that was induced by effective removal of residual oxides by carbon.

Nano-sized Polymer-dispersed Liquid Crystal with Strong Scattering Intensity Made by Emulsification Process

  • Jin, Yan;Lee, Burm-Young;Kwon, Soon-Bum;Lee, Ji-Hoon
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.655-656
    • /
    • 2009
  • Here we report a nano-sized polymer-dispersed liquid crystal (NPDLC) with an excellent scattering effect due to the maximized Mie scattering. We used a modified emulsification method combined with a limited coalescence mechanism. The fabrication process is simpler to obtain uniform nano-sized droplets rather than the conventional polymerizationinduced phase separation method.

  • PDF

철강 위에 SiC 중간층을 사용한 나노결정질 다이아몬드 코팅 (Nanocrystalline Diamond Coating on Steel with SiC Interlayer)

  • 명재우;강찬형
    • 한국표면공학회지
    • /
    • 제47권2호
    • /
    • pp.75-80
    • /
    • 2014
  • Nanocrystalline diamond(NCD) films on steel(SKH51) has been investigated using SiC interlayer film. SiC was deposited on SKH51 or Si wafer by RF magnetron sputter. NCD was deposited on SiC at $600^{\circ}C$ for 0.5~4 h employing microwave plasma CVD. Film morphology was observed by FESEM and FIB. Film adherence was examined by Rockwell C adhesion test. The growth rate of NCD on SiC/Si substrate was much higher than that on SiC/SKH51. During particle coalescence, NCD growth rate was slow since overall rate was determined by the diffusion of carbon on SiC surface. After completion of particle coalescence, NCD growth became faster with the reaction of carbon on NCD film controlling the whole process. In the case of SiC/SKH51 substrate, a complete NCD film was not formed even after 4 h of deposition. The adhesion test of NCD/SiC/SKH51 samples revealed a delamination of film whereas that of SiC/SKH51 showed a good adhesion. Many voids of less than 0.1 ${\mu}m$ were detected on NCD/SiC interface. These voids were believed as the reason for the poor adhesion between NCD and SiC films. The origin of voids was due to the insufficient coalescence of diamond particles on SiC surface in the early stage of deposition.

A fracture mechanics simulation of the pre-holed concrete Brazilian discs

  • Sarfarazi, Vahab;Haeri, Hadi;Shemirani, Alireza Bagher;Nezamabadi, Maryam Firoozi
    • Structural Engineering and Mechanics
    • /
    • 제66권3호
    • /
    • pp.343-351
    • /
    • 2018
  • Brazilian disc test is one of the most widely used experiments in the literature of geo-mechanics. In this work, the pre-holed concrete Brazilian disc specimens are numerically modelled by a two-dimensional discrete element approach. The cracks initiations, propagations and coalescences in the numerically simulated Brazilian discs (each containing a single cylindrical hole and or multiple holes) are studied. The pre-holed Brazilian discs are numerically tested under Brazilian test conditions. The single-holed Brazilian discs with different ratios of the diameter of the holes to that of the disc radius are modelled first. The breakage load in the ring type disc specimens containing an internal hole with varying diameters is measured and the crack propagation mechanism around the wall of the ring is investigated. The crack propagation and coalescence mechanisms are also studied for the case of multi-holes' concrete Brazilian discs. The numerical and experimental results show that the breaking mechanism of the pre-holed disc specimens is mainly due to the initiation of the radially induced tensile cracks which are growth from the surface of the central hole. Radially cracks propagated toward the direction of diametrical loading. It has been observed that for the case of disc specimens with multiple holes under diametrical compressive loading, the breaking process of the modelled specimens may occur due to the simultaneous cracks propagation and cracks coalescence phenomena. These results also show that as the hole diameter and the number of the holes increases both the failure stress and the crack initiation stress decreases. The experimental results already exist in the literature are quit agree with the proposed numerical simulation results which validates this simulation procedure.

Solderable 이방성 도전성 접착제를 이용한 마이크로 접합 프로세스 (Micro Joining Process Using Solderable Anisotropic Conductive Adhesive)

  • 임병승;전성호;송용;김연희;김주헌;김종민
    • 대한용접접합학회:학술대회논문집
    • /
    • 대한용접접합학회 2009년 추계학술발표대회
    • /
    • pp.73-73
    • /
    • 2009
  • In this sutdy, a new class ACA(Anisotropic Conductive Adhesive) with low-melting-point alloy(LMPA) and self-organized interconnection method were developed. This developed self-organized interconnection method are achieved by the flow, melting, coalescence and wetting characteristics of the LMPA fillers in ACA. In order to observe self-interconnection characteristic, the QFP($14{\times}14{\times}2.7mm$ size and 1mm lead pitch) was used. Thermal characteristic of the ACA and temperature-dependant viscosity characteristics of the polymer were observed by differential scanning calorimetry(DSC) and torsional parallel rheometer, respectively. A electrical and mechanical characteristics of QFP bonding were measured using multimeter and pull tester, respectively. Wetting and coalescence characteristics of LMPA filler particles and morphology of conduction path were observed by microfocus X-ray inspection systems and cross-sectional optical microscope. As a result, the developed self-organized interconnection method has a good electrical characteristic($2.41m{\Omega}$) and bonding strength(17.19N) by metallurgical interconnection of molten solder particles in ACA.

  • PDF

건축 평면에서 공간 형상의 구조 체계에 관한 연구 - 부분이 전체를 이루는 합체 도식 개발을 중심으로 - (A Study on the Structural System of Space Configuration in Architectural Plane - Focusing on the Coalesce scheme development for part-whole Process -)

  • 박순매;윤재신
    • 대한건축학회논문집:계획계
    • /
    • 제34권9호
    • /
    • pp.9-20
    • /
    • 2018
  • There are many large and small spaces in the interior of the building, and these spaces are arranged and connected to form a systematic spatial structure. A structure is a collection of several parts to form a whole. In other words, the spatial structure in architecture can be seen as a whole organized and organized as individual unit spaces are gathered together. Therefore, in order to understand the spatial structure, we first need to define the unit spaces that form part, how they are interconnected and arranged, and then understand how and how these unit spaces are organized to form a whole. The main purpose of this study is to study the structural system of space based on the shape information of space on architectural plane. This means interpreting the process and method of how the unit spaces defined as a certain shape on the architectural plane are organized step by step, integrated into a higher level, and eventually integrated into one whole. In this paper, the shape and layout of the unit space are identified in the architectural plan, the connection relation is defined, and expressed in the network form. And suggests a new methodology for interpreting the organizational process in which the following spaces are integrated as a whole. This new methodology is based on human perceptual characteristics. When people recognize an object, they recognize the object partly and completely. We want to explain the relationship between parts of space and the whole according to their characteristics.

SiC 휘스커 강화 알미늄기 복합재료의 미소 표면 피로균열의 발생 및 진전거동 (Initiation and Growth Behavior of Small Surface Fatigue Cracks on SiC Whisker Reinforced Aluminum Composite)

  • 최영근;이택순;김상태;서창민;이문환
    • 대한기계학회논문집A
    • /
    • 제24권6호
    • /
    • pp.1584-1592
    • /
    • 2000
  • Reversed plane bending fatigue tests were conducted on SiC whisker reinforced aluminum composite which were consolidated by squeeze casting process. Initiation and growth of small surface fatigue c racks were investigated by means of a plastic replica technique. The fatigue crack initiated in the vicinity of SiC whisker/matrix interface. It was found that a fatigue crack deflected along SiC whisker and grew in a zig-zag manner microscopically, although the crack propagated along the direction normal to the loading axis macroscopically. The coalescence of micro-cracks was observed in the tests conducted at high stress levels, but were not evident in tests in which lower levels of stress were applied. Due to the coalescence, a higher crack growth rate of small cracks rather than those of long cracks was recognized in da/dn -ΔK realtionship.

Simulation of crack initiation and propagation in three point bending test using PFC2D

  • Haeri, Hadi;Sarfarazi, Vahab;Zhu, Zheming;Hedayat, Ahmadreza;Nezamabadi, Maryam Firoozi;Karbala, Mohammadamin
    • Structural Engineering and Mechanics
    • /
    • 제66권4호
    • /
    • pp.453-463
    • /
    • 2018
  • Three points bending flexural test was modelled numerically to study the crack propagation in the pre-cracked beams. The pre-existing double internal cracks inside the beam models were considered to investigate the crack propagation and coalescence paths within the modelled samples. Notch configuration effects on the failure stress were considered too. This numerical analysis shown that the propagation of wing cracks emanating from the tips of the pre-existing internal cracks caused the final breaking of beams specimens. It was also shown that when two notches were overlapped, they both mobilized in the failure process and the failure stress was decreased when the notches were located in centre line. However, the failure stress was increased by increasing the bridge area angle. Finally, it was shown that in all cases, there were good agreements between the discrete element method results and, the other numerical and experimental results. In this research, it is tried to improve the understanding of the crack propagation and crack coalescence phenomena in brittle materials which is of paramount importance in the stability analyses of rock and concrete structures, such as the underground openings, rock slopes and tunnel construction.