DOI QR코드

DOI QR Code

Simulation of crack initiation and propagation in three point bending test using PFC2D

  • Haeri, Hadi (College of Architecture and Environment, Sichuan University) ;
  • Sarfarazi, Vahab (Department of Mining Engineering, Hamedan University of Technology) ;
  • Zhu, Zheming (College of Architecture and Environment, Sichuan University) ;
  • Hedayat, Ahmadreza (Department of Civil and Environmental Engineering, Colorado School of Mines) ;
  • Nezamabadi, Maryam Firoozi (Department of Civil Engineering, South Tehran Branch, Islamic Azad University) ;
  • Karbala, Mohammadamin (Department of Mining Engineering, Amirkabir University of Technology (Tehran polytechnic))
  • Received : 2017.11.06
  • Accepted : 2018.02.20
  • Published : 2018.05.25

Abstract

Three points bending flexural test was modelled numerically to study the crack propagation in the pre-cracked beams. The pre-existing double internal cracks inside the beam models were considered to investigate the crack propagation and coalescence paths within the modelled samples. Notch configuration effects on the failure stress were considered too. This numerical analysis shown that the propagation of wing cracks emanating from the tips of the pre-existing internal cracks caused the final breaking of beams specimens. It was also shown that when two notches were overlapped, they both mobilized in the failure process and the failure stress was decreased when the notches were located in centre line. However, the failure stress was increased by increasing the bridge area angle. Finally, it was shown that in all cases, there were good agreements between the discrete element method results and, the other numerical and experimental results. In this research, it is tried to improve the understanding of the crack propagation and crack coalescence phenomena in brittle materials which is of paramount importance in the stability analyses of rock and concrete structures, such as the underground openings, rock slopes and tunnel construction.

Keywords

References

  1. Ameen, M., Raghu Prasad, B.K. and Gopalakrishnan, A.R. (2011), "Modeling of concrete cracking-a hybrid technique of using displacement discontinuity element method and direct boundary element method", Eng. Analy. Bound. Elem., 35(9), 1054-1059. https://doi.org/10.1016/j.enganabound.2011.03.009
  2. Belytschko, T. and Black, T. (1999), "Elastic crack growth in finite elements with minimal remeshing", Int. J. Numer. Meth. Eng., 45(5), 601-620. https://doi.org/10.1002/(SICI)1097-0207(19990620)45:5<601::AID-NME598>3.0.CO;2-S
  3. Bi, J., Zhou, X.P. and Qian, Q.H. (2016), "The 3D Numerical simulation for the propagation process of multiple pre-existing flaws in rock-like materials subjected to biaxial compressive loads", Rock Mech. Rock Eng., 49(5), 1611-1627. https://doi.org/10.1007/s00603-015-0867-y
  4. Bi, J., Zhou, X.P. and Xu, X.M. (2017), "Numerical simulation of failure process of rock-like materials subjected to impact loads", Int. J. Geomech., 17(3), 04016073 https://doi.org/10.1061/(ASCE)GM.1943-5622.0000769
  5. Bobet, A. (2000), "The initiation of secondary cracks in compression", Eng. Fract. Mech., 66(2), 187-219. https://doi.org/10.1016/S0013-7944(00)00009-6
  6. Bombolakis, E.G. (1968), "Photoelastic study of initial stages of brittle fracture in compression", Tectonophys., 6(6), 461-473. https://doi.org/10.1016/0040-1951(68)90072-3
  7. Cundall, P.A. and Strack, O.D.L. (1979), "A discrete numerical model for granular assemblies", Geotech., 29(1), 47-65. https://doi.org/10.1680/geot.1979.29.1.47
  8. Donze, F.V., Richefeu, V. and Magnier, S.A. (2009), "Advances in discrete element method applied to soil rock and concrete mechanics", Electr. J. Geol. Eng., 8(1), 1-44.
  9. Erdogan, F. and Sih, G.C. (1963), "On the crack extension path in plates under plane loading and transverse shear", ASME J. Bas. Eng., 85(4), 519-527. https://doi.org/10.1115/1.3656897
  10. Ghazvinian, A., Sarfarazi, V., Schubert, W. and Blumel, M. (2012), "A study of the failure mechanism of planar non-persistent open joints using PFC2D", Rock Mech. Rock Eng., 45(5), 677-693. https://doi.org/10.1007/s00603-012-0233-2
  11. Haeri, H. (2015), "Influence of the inclined edge notches on the shear-fracture behavior in edge-notched beam specimens", Comput. Concrete, 16(4), 605-623. https://doi.org/10.12989/cac.2015.16.4.605
  12. Haeri, H. (2016), "Propagation mechanism of neighboring cracks in rock-like cylindrical specimens under uniaxial compression", J. Min. Sci., 51(5), 1062-1106.
  13. Haeri, H., Khaloo, A. and Marji, M.F. (2015), "Experimental and numerical simulation of the microcrack coalescence mechanism in rock-like materials", Strength Mater., 47(5), 740-754. https://doi.org/10.1007/s11223-015-9711-6
  14. Haeri, H., Sarfarazi, V. and Hedayat, A. (2016a), "Suggesting a new testing device for determination of tensile strength of concrete", Struct. Eng. Mech., 60(6), 939-952. https://doi.org/10.12989/sem.2016.60.6.939
  15. Haeri, H., Sarfarazi, V. and Lazemi, H. (2016b), "Experimental study of shear behavior of planar non-persistent joint", Comput. Concrete, 17(5), 639-653. https://doi.org/10.12989/cac.2016.17.5.639
  16. Haeri, H., Shahriar, K. and Marji, M.F. (2013), "Modeling the propagation mechanism of two random micro cracks in rock samples under uniform tensile loading,", Proceedings of the ICF13.
  17. Hoek, E. and Bieniawski, Z.T. (1965), "Brittle fracture propagation in rock under compression", Int. J. Fract., 1(3), 137-155.
  18. Hussian, M.A., Pu, E.L. and Underwood, J.H. (1974), Strain Energy Release Rate for a Crack under Combined Mode I and Mode II. In: Fracture Analysis, ASTM STP 560, American Society for Testing and Materials, 2-28.
  19. Ingraffea, A.R. and Heuze, F.E. (1980), "Finite element models for rock fracture mechanics", Int. J. Numer. Analy. Meth. Geomech., 4(1), 25-43. https://doi.org/10.1002/nag.1610040103
  20. Itasca, C.G. (2002), Users' Manual for Particle Flow Code in 2 Dimensions (PFC2D), Version 3.1, Minneapolis, Minnesota, U.S.A.
  21. Janeiro, R.P. and Einstein, H.H. (2010), "Experimental study of the cracking behavior of specimens containing inclusions (under uniaxial compression)", Int. J. Fract., 164(1), 83-102. https://doi.org/10.1007/s10704-010-9457-x
  22. Jiang, Z., Wan, S., Zhong, Z., Li, M. and Shen, K. (2014), "Determination of mode-I fracture toughness and non-uniformity for GFRP double cantilever beam specimens with an adhesive layer", Eng. Fract. Mech., 128, 139-156. https://doi.org/10.1016/j.engfracmech.2014.07.011
  23. Jiefan, H., Ganglin, C., Yonghong, Z. and Ren, W. (1990), "An experimental study of the strain field development prior to failure of a marble plate under compression", Tectonophys., 175(1-3), 184-269.
  24. Lajtai, E.Z. (1971), "A theoretical and experimental evaluation of the Griffith theory of brittle fracture", Tectonophys., 11(2), 129-156. https://doi.org/10.1016/0040-1951(71)90060-6
  25. Lajtai, E.Z. (1974), "Brittle fractures in compression", Int. J. Fract., 10(4), 525-536. https://doi.org/10.1007/BF00155255
  26. Lancaster, I.M., Khalid, H.A. and Kougioumtzoglou, I.A. (2013), "Extended FEM modelling of crack propagation using the semi-circular bending test", Constr. Build. Mater., 48, 270-277. https://doi.org/10.1016/j.conbuildmat.2013.06.046
  27. Leonel, E.D., Chateauneuf, A. and Venturini, W.S. (2012), "Probabilistic crack growth analyses using a boundary element model: Applications in linear elastic fracture and fatigue problems", Eng. Analy. Bound. Elem., 36, 944-959. https://doi.org/10.1016/j.enganabound.2011.12.016
  28. Li, Y.P., Chen, L.Z. and Wang, Y.H. (2005), "Experimental research on pre-cracked marble under compression", Int. J. Sol. Struct., 42, 2505-2516. https://doi.org/10.1016/j.ijsolstr.2004.09.033
  29. Miller, J.T. and Einstein, H.H. (2008), "Crack coalescence tests on granite", Proceedings of the 42nd US Rock Mechanics Symposium, San Francisco, U.S.A.
  30. Mughieda, O. and Alzoubi, A.K. (2004), "Fracture mechanisms of offset rock joints-a laboratory investigation", Geotech. Geol. Eng., 22(4), 545-562. https://doi.org/10.1023/B:GEGE.0000047045.89857.06
  31. Noel, M. and Soudki, K. (2014), "Estimation of the crack width and deformation of FRP-reinforced concrete flexural members with and without transverse shear reinforcement", Eng. Struct., 59, 393-398. https://doi.org/10.1016/j.engstruct.2013.11.005
  32. Oliveira, H.L. and Leonel, E.D. (2014), "An alternative BEM formulation, based on dipoles of stresses and tangent operator technique, applied to cohesive crack growth modeling", Eng. Analy. Bound. Elem., 41, 74-82. https://doi.org/10.1016/j.enganabound.2014.01.002
  33. Ozecebe, G. (2011), "Minimum flexural reinforcement for T-beams made of higher strength concrete", Can. J. Civil Eng., 26(5), 525-534. https://doi.org/10.1139/l99-013
  34. Park, N.S. (2001), "Crack propagation and coalescence in rock under uniaxial compression", M.Sc. Dissertation, Seoul National University, Korea.
  35. Potyondy, D.O. and Cundall, P.A. (2004), "A bonded-particle model for rock", Int. J. Rock Mech. Min. Sci., 41, 1329-1364. https://doi.org/10.1016/j.ijrmms.2004.09.011
  36. Reyes, O. and Einstein, H.H. (1991), "Failure mechanisms of fractured rock-a fracture coalescence model", Proceedings of the 7th Congress of the ISRM, Aachen, Germany.
  37. Ruiz, G. and Carmona, R.J. (2006a), "Experimental study on the influence of the shape of the cross-section and the rebar arrangement on the fracture of LRC beams", Mater. Struct., 39(3), 343-352. https://doi.org/10.1007/s11527-005-9006-7
  38. Ruiz, G., Carmona, R.J. and Cendon, D.A. (2006b), "Propagation of a cohesive crack through adherent reinforcement layers", Comput. Meth. Appl. Mech. Eng., 195(52), 7237-7248. https://doi.org/10.1016/j.cma.2005.01.029
  39. Sagong, M. and Bobet, A. (2002), "Coalescence of multiple flaws in a rock-model material in uniaxial compression", Int. J. Rock Mech. Min. Sci., 39(2), 229-241. https://doi.org/10.1016/S1365-1609(02)00027-8
  40. Sardemir, M. (2016), "Empirical modeling of flexural and splitting tensile strengths of concrete containing fly ash by GEP", Comput. Concrete, 17(4), 489-498. https://doi.org/10.12989/cac.2016.17.4.489
  41. Sarfarazi, V. and Haeri, H. (2016), "Effect of number and configuration of bridges on shear properties of sliding surface", J. Min. Sci., 52(2), 245-257. https://doi.org/10.1134/S1062739116020370
  42. Sarfarazi, V. and Haeri, H. (2016c), "A review of experimental and numerical investigations about crack propagation", Comput. Concrete, 18(2), 235-266. https://doi.org/10.12989/cac.2016.18.2.235
  43. Sarfarazi, V. and Shubert, W. (2016b), "Numerical simulation of tensile failure of concrete in direct, flexural, double punch tensile and ring tests", Period. Polyech. Civil Eng., 2, 1-8.
  44. Sarfarazi, V., Faridi, H.R., Haeri, H. and Schubert, W. (2016c), "A new approach for measurement of anisotropic tensile strength of concrete", Adv. Concrete Constr., 3(4), 269-284. https://doi.org/10.12989/ACC.2015.3.4.269
  45. Sarfarazi, V., Ghazvinian, A., Schubert, W., Blumel, M. and Nejati, H.R. (2014), "Numerical simulation of the process of fracture of echelon rock joints", Rock Mech. Rock Eng., 47(4), 1355-1371. https://doi.org/10.1007/s00603-013-0450-3
  46. Sarfarazi, V., Haeri, H. and Khaloo, A. (2016a), "The effect of non-persistent joints on sliding direction of rock slopes", Comput. Concrete, 17(6), 723-737. https://doi.org/10.12989/cac.2016.17.6.723
  47. Shaowei, H., Aiqing, X., Xin, H. and Yangyang, Y. (2016), "Study on fracture characteristics of reinforced concrete wedge splitting tests", Comput. Concrete, 18(3), 337-354. https://doi.org/10.12989/cac.2016.18.3.337
  48. Shen, B. (1995), "The mechanism of fracture coalescence in compression-experimental study and numerical simulation", Eng. Fract. Mech., 51(1), 73-85. https://doi.org/10.1016/0013-7944(94)00201-R
  49. Shen, B. and Stephansson, O. (1994), "Modification of the G-criterion for crack propagation subjected to compression", Eng. Fract. Mech., 47(2), 177-189. https://doi.org/10.1016/0013-7944(94)90219-4
  50. Shuraim, A.B., Aslam, F., Hussain, R. and Alhozaimy, A. (2016), "Analysis of punching shear in high strength RC panels-experiments, comparison with codes and FEM results", Comput. Concrete, 17(6), 739-760. https://doi.org/10.12989/cac.2016.17.6.739
  51. Sih, G.C. (1974), "Strain-energy-density factor applied to mixed mode crack problems", Int. J. Fract., 10(3), 305-321. https://doi.org/10.1007/BF00035493
  52. Silling, S.A. (2000), "Reformulation of elasticity theory for discontinuities and long-range forces", J. Phys. Sol., 48(1), 175-209. https://doi.org/10.1016/S0022-5096(99)00029-0
  53. Silling, S.A. (2017), "Stability of peridynamic correspondence material models and their particle discretizations", Comput. Meth. Appl. Mech. Eng., 322, 42-57. https://doi.org/10.1016/j.cma.2017.03.043
  54. Tang, C.A. and Kou, S.Q. (1998), "Crack propagation and coalescence in brittle materials under compression", Eng. Fract. Mech., 61(3-4), 311-324. https://doi.org/10.1016/S0013-7944(98)00067-8
  55. Tang, C.A., Lin, P., Wong, R.H.C. and Chau, K.T. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws-part II: Numerical approach", Int. J. Rock Mech. Min. Sci., 38(7), 925-939. https://doi.org/10.1016/S1365-1609(01)00065-X
  56. Vallejo, L.E. (1987), "The influence of fissures in a stiff clay subjected to direct shear", Geotech., 37(1), 69-82. https://doi.org/10.1680/geot.1987.37.1.69
  57. Vallejo, L.E. (1988), "The brittle and ductile behavior of clay samples containing a crack under mixed mode loading", Theoret. Appl. Fract. Mech., 10(1), 73-78. https://doi.org/10.1016/0167-8442(88)90058-4
  58. Vasarhelyi, B. and Bobet, A. (2000), "Modeling of crack initiation, propagation and coalescence in uniaxial compression", Rock Mech. Rock Eng., 33(2), 119-139. https://doi.org/10.1007/s006030050038
  59. Vesga, L.F., Vallejo, L.E. and Lobo-Guerrero, S. (2008), "DEM analysis of the crack propagation in brittle clays under uniaxial compression tests", Int. J. Numer. Analy. Meth. Geomech., 32(11), 1405-1415. https://doi.org/10.1002/nag.665
  60. Wang, R., Zhao, Y., Chen, Y., Yan, H., Yin, Y.Q., Yao, C.Y. and Zhang, H. (1987), "Experimental and finite simulation of X-shear fractures from a crack in marble", Tectonophys., 144, 141-150. https://doi.org/10.1016/0040-1951(87)90013-8
  61. Wang, T., Dai, J.G. and Zheng, J.J. (2015), "Multi-angle truss model for predicting the shear deformation of RC beams with low span-effective depth ratios", Eng. Struct., 91, 85-95. https://doi.org/10.1016/j.engstruct.2015.02.035
  62. Wang, X., Zhu, Z., Wang, M., Ying, P., Zhou, L. and Dong, Y. (2017), "Study of rock dynamic fracture toughness by using VB-SCSC specimens under medium-low speed impacts", Eng. Fract. Mech., 181, 52-64. https://doi.org/10.1016/j.engfracmech.2017.06.024
  63. Wong, L.N.Y. and Einstein, H.H. (2008a), "Crack coalescence in molded gypsum and Carrara marble: Part 1. Macroscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 475-511. https://doi.org/10.1007/s00603-008-0002-4
  64. Wong, L.N.Y. and Einstein, H.H. (2008b), "Crack coalescence in molded gypsum and Carrara marble: Part 2. Microscopic observations and interpretation", Rock Mech. Rock Eng., 42(3), 513-545. https://doi.org/10.1007/s00603-008-0003-3
  65. Wong, L.N.Y. and Einstein, H.H. (2009), "Systematic evaluation of cracking behavior in specimens containing single flaws under uniaxial compression", Int. J. Rock Mech. Min. Sci., 46(2), 239-249. https://doi.org/10.1016/j.ijrmms.2008.03.006
  66. Wong, R.H.C. and Chau, K.T. (1998), "Crack coalescence in a rock-like material containing two cracks", Int. J. Rock Mech. Min. Sci., 35(2), 147-164. https://doi.org/10.1016/S0148-9062(97)00303-3
  67. Wong, R.H.C., Chau, K.T., Tang, C.A. and Lin, P. (2001), "Analysis of crack coalescence in rock-like materials containing three flaws-part I: Experimental approach", Int. J. Rock Mech. Min. Sci., 38(7), 909-924. https://doi.org/10.1016/S1365-1609(01)00064-8
  68. Wong, R.H.C., Guo, Y.S.H., Liu, L.Q., Liu, P.X. and Ma, S.P. (2008), "Nucleation and growth of anti-wing crack from tips of strike-slip flaw", Proceedings of the 42nd US Rock Mechanics Symposium, San Francisco, U.S.A.
  69. Yang, S.Q. (2015), "An experimental study on fracture coalescence characteristics of brittle sandstone specimens combined various flaws", Geomech. Eng., 8(4), 541-557. https://doi.org/10.12989/gae.2015.8.4.541
  70. Yoshihara, H. (2013), "Initiation and propagation fracture toughness of solid wood under the mixed mode I/II condition examined by mixed-mode bending test", Eng. Fract. Mech., 104, 1-15. https://doi.org/10.1016/j.engfracmech.2013.03.023
  71. Zeng, G., Yang, X., Yina, A. and Bai, F. (2014), "Simulation of damage evolution and crack propagation in three-point bending pre-cracked asphalt mixture beam", Constr. Build. Mater., 55, 323-332. https://doi.org/10.1016/j.conbuildmat.2014.01.058
  72. Zhou, X.P. and Wang, Y.T. (2016), "Numerical simulation of crack propagation and coalescence in pre-cracked rock-like Brazilian disks using the non-ordinary state-based peridynamics", Int. J. Rock Mech. Min. Sci., 89, 235-249.
  73. Zhou, X.P. and Yang, H.Q. (2012), "Multiscale numerical modeling of propagation and coalescence of multiple cracks in rock masses", Int. J. Rock Mech. Min. Sci., 55, 15-27.
  74. Zhou, X.P., Gu, X.B. and Wang, Y.T. (2015), "Numerical simulations of propagation, bifurcation and coalescence of cracks in rocks", Int. J. Rock Mech. Min. Sci., 80, 241-254.
  75. Zhou, X.P., Bi, J. and Qian, Q.H. (2015), "Numerical simulation of crack growth and coalescence in rock-like materials containing multiple pre-existing flaws", Rock Mech. Rock Eng., 48(3), 1097-1114. https://doi.org/10.1007/s00603-014-0627-4

Cited by

  1. Feasibility of Reusing Damaged Steel Beams in Temporary Structures vol.6, pp.5, 2018, https://doi.org/10.3390/infrastructures6050069