• Title/Summary/Keyword: coal mining

Search Result 260, Processing Time 0.02 seconds

Environmental Assessment for Acid Mine Drainage by Past Coal Mining Activities in the Youngwol, Jungseon and Pyungchang areas, Korea (영월, 정선 및 평창지역 폐 석탄광 산성광산배수의 환경오염 평가)

  • 정명채
    • Economic and Environmental Geology
    • /
    • v.36 no.2
    • /
    • pp.111-121
    • /
    • 2003
  • The objective of this study is to investigate the physical and chemical properties for environmental assessment of water system affected by acid mine drainage (AMD) from coal mining activities in the Youngwol, Jungseon and Pyungchang areas in Korea. During November 2000 to July 2002, 6 times of water samples were collected season-ally from acid mine drainage and nearby streams at 13 coal mines in the study area. The physical and chemical properties including pH, Eh, TDS, salinity, bicarbonates and DO were measured in the field. Eighteen cations includ-ing Al, Ca, Fe, Mg, Mn and Zn, and 6 anions including nitrates and sulfates were also analyzed by ICP-AES and If, respectively. Acid water from the Jungam coal mine has typical characteristics of AMD with very low pH(3∼4) and high TDS(1,000∼5,000 mg/1). Relatively high concentrations(mg/kg) of heavy meals, especially for Al(380), Fe(80), Mn(44) and Zn(8), were found in water samples from the Jungam coal mine area. Water samples from the Seojin, Sebang and Sungjin coal mines also contained over 50 mg/l of Al, >100 mg/1 of Fe and )10 mg/1 of Mn. In addition to anioins, over 1,000 mg/l of sulfate was found in several water samples. Seasonally, the concentrations of metals and sulfates varied; wet season samples were relatively higher in metals and sulfates than dry season samples. It is needed to establish the proper remediation and environmental monitoring of the AMD continuously.

A Case Study of Exposure to Elemental Carbon (EC) in an Underground Copper Ore Mine (구리원석광산에서의 Elemental Carbon (EC) 노출에 관한 사례연구)

  • Lee, Su-Gil;Kim, Jung-Hee;Kim, Seong-Soo
    • Journal of Environmental Science International
    • /
    • v.26 no.9
    • /
    • pp.1013-1021
    • /
    • 2017
  • Exposure to Diesel Particulate Matter (DPM) potentially causes adverse health effects (e.g. respiratory symptoms, lung cancer). Due to a lack of data on Elemental Carbon (EC) exposure levels in underground copper ore mining (unlike other underground mining industries such as non-metallic and coal mining), this case study aims to provide individual miners' EC exposure levels, and information on their work practices including use of personal protective equipment. EC measurement was carried out during different work activities (i.e. drilling, driving a loader, plant fitting, plant operation, driving a Specialized Mining Vehicle (SMV)) as per NIOSH Method 5040. The copper miners were working 10 h/day and 5 days/week. This study found that the most significant exposures to EC were reported from driving a loader (range $0.02-0.42mg/m^3$). Even though there were control systems (i.e. water tanks and DPM filters) on the diesel vehicles, around 49.5% of the results were over the adjusted recommendable exposure limit ($0.078mg/m^3$). This was probably due to: (1) driver's frequently getting in and out of the diesel vehicles and opening the windows of the diesel vehicles, and (2) inappropriate maintenance of the diesel vehicles and the DPM control systems. The use of the P2 type respirator provided was less than 19.2%. However, there was no significant difference between the day shift results and the night shift results. In order to prevent or minimize exposure to EC in the copper ore mine, it is recommended that the miners are educated in the need to wear the appropriate respirator provided during their work shifts, and to maintain the diesel engine and emission control systems on a regular basis. Consideration should be given to a specific examination of the diesel vehicles' air-conditioning filters and the air ventilation system to control excessive airborne contaminants in the underground copper mine.

Automated Systems and Trust: Mineworkers' Trust in Proximity Detection Systems for Mobile Machines

  • Swanson, LaTasha R.;Bellanca, Jennica L.;Helton, Justin
    • Safety and Health at Work
    • /
    • v.10 no.4
    • /
    • pp.461-469
    • /
    • 2019
  • Background: Collisions involving workers and mobile machines continue to be a major concern in underground coal mines. Over the last 30 years, these collisions have resulted in numerous injuries and fatalities. Recently, the Mine Safety and Health Administration (MSHA) proposed a rule that would require mines to equip mobile machines with proximity detection systems (PDSs) (systems designed for automated collision avoidance). Even though this regulation has not been enacted, some mines have installed PDSs on their scoops and hauling machines. However, early implementation of PDSs has introduced a variety of safety concerns. Past findings show that workers' trust can affect technology integration and influence unsafe use of automated technologies. Methods: Using a mixed-methods approach, the present study explores the effect that factors such as mine of employment, age, experience, and system type have on workers' trust in PDSs for mobile machines. The study also explores how workers are trained on PDSs and how this training influences trust. Results: The study resulted in three major findings. First, the mine of employment had a significant influence on workers' trust in mobile PDSs. Second, hands-on and classroom training was the most common types of training. Finally, over 70% of workers are trained on the system by the mine compared with 36% trained by the system manufacturer. Conclusion: The influence of workers' mine of employment on trust in PDSs may indicate that practitioners and researchers may need to give the organizational and physical characteristics of each mine careful consideration to ensure safe integration of automated systems.

Experimental study on nano silica modified cement base grouting reinforcement materials

  • Zhou, Fei;Sun, Wenbin;Shao, Jianli;Kong, Lingjun;Geng, Xueyu
    • Geomechanics and Engineering
    • /
    • v.20 no.1
    • /
    • pp.67-73
    • /
    • 2020
  • With the increasing number of underground projects, the problem of rock-water coupling catastrophe has increasingly become the focus of safety. Grouting reinforcement is gradually applied in subway, tunnel, bridge reinforcement, coal mine floor and other construction projects. At present, cement-based grouting materials are easy to shrink and have low strength after solidification. In order to overcome the special problems of high water pressure and high in-situ stress in deep part and improve the reinforcement effect. In view of the mining conditions of deep surrounding rock, a new type of cement-based reinforcement material was developed. We analyses the principle and main indexes of floor strengthening, and tests and optimizes the indexes and proportions of the two materials through laboratory tests. Then, observes and compares the microstructures of the optimized floor strengthening materials with those of the traditional strengthening materials through scanning electron microscopy. The test results show that 42.5 Portland cement-based grouting reinforcement material has the advantages of slight expansion, anti-dry-shrinkage, high compressive strength and high density when the water-cement ratio is 0.4, the content of bentonite is 4%, and the content of Nano Silica is 2.5%. The reinforcement effect is better than other traditional grouting reinforcement materials.

A Study on the Urban Spatial Policy for the Industrial Cities in Abandoned Mining Area Through the Analysis of the Actual Condition of Urban Shrinkage - A Case Study on Shrinking Cities in Abandoned Mining area by the Coal Industry Rationalization Policy (폐광지역 산업도시의 도시축소양상과 도시공간정책방안에 관한 연구 -석탄산업합리화조치에 따른 폐광지역 축소도시에 대한 사례 연구)

  • Chi, Eun Hee;Han, Dong Gyu;Jeoung, Chan Gu;Kang, Jun Mo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.1
    • /
    • pp.135-144
    • /
    • 2022
  • This paper aimed to analyze the type of urban shrinkage over the past 20 years for four case cities designated as abandoned mining area promotion zones and present the direction of future urban spatial policies through the analysis of shrinking status. According to the analysis of urban shrinkage in the past 20 years, all of the case cities were analyzed as fixed-type shrinking cities, showing a population decrease of more than 30% over the past 40 years compared to the peak population. Despite the decrease in population, the designated area of urbanization and non-urban areas is increasing every year, and the development permit and construction permit in non-urban areas are also increasing, requiring efficient management and operation of urban space. It is necessary to study military-level cities in the high-risk phase of extinction in the future, and to develop various indicators for segmentation of urban shrinkage types and analysis of status by type.

Comparison of Carbon Storage between Forest Restoration of Abandoned Coal Mine and Natural Vegetation Lands (폐탄광 산림복원지와 자연식생지의 탄소저장량 비교)

  • Kim, So-Jin;Jung, Yu-Gyeong;Park, Ki-Hyung;Kim, Ju-Eun;Bae, Jeong-Hyeon;Kang, Won-Seok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.5
    • /
    • pp.33-46
    • /
    • 2023
  • In this study, carbon storage in the aboveground biomass, litter layer, and soil layer was calculated for abandoned mining restoration areas to determine the level of carbon storage after the restoration project through comparison with the ecological reference. Five survey sites were selected for each abandoned mining restoration area in Boryeong-si, Chungcheongnam-do, and the ecological reference that can be a goal and model for the restoration project. The carbon storage in the restoration area was 0~21.3Mg C ha-1, the deciduous layer 3.3~6.0Mg C ha-1, and the soil layer(0-30cm) 8.3~35.1Mg C ha-1, showing a significant difference in carbon storage by target site. The total carbon storage was between 6.1 and 35.3% of the ecological reference, with restoration area ranging from 14.0 to 62.4 Mg C ha-1. The total carbon storage in the restoration area and the ecological reference differed the most in the aboveground biomass and was less than 12%. Based on these results, forest restoration area need to improve the carbon storage of forests through continuous management and monitoring so trees can grow and restore productivity in the early stages of the restoration project. The results of this study can be used as primary data for preparing future forest restoration indicators by identifying the storage of abandoned mining restoration areas.

Removal of chromium from tannery wastewater by electrosorption on carbon prepared from peach stones: effect of applied potential

  • Ziati, Mounir;Khemmari, Fariza;Kecir, Mohamed;Hazourli, Sabir
    • Carbon letters
    • /
    • v.21
    • /
    • pp.81-85
    • /
    • 2017
  • The objective of this study is the removal of chromium from tannery wastewater by electrosorption on carbon prepared from lignocellulosic natural residue "peach stones' thermally treated. The followed steps for obtaining coal in chronological order were: cleaning, drying, crushing and finally its carbonization at $900^{\circ}C$. The characterization of the carbon material resulted in properties comparable to those of many coals industrially manufactured. The study of the dynamic adsorption of chromium on the obtained material resulted in a low removal rate (33.7%) without applied potential. The application of negative potentials of -0.7 V and -1.4 increases the adsorption of chromium up to 90% and 96% respectively. Whereas a positive potential of +1.4V allows desorption of the contaminant of 138%.

Estimation of 3D active earth pressure under nonlinear strength condition

  • Zhang, D.B.;Jiang, Y.;Yang, X.L.
    • Geomechanics and Engineering
    • /
    • v.17 no.6
    • /
    • pp.515-525
    • /
    • 2019
  • The calculation of active earth pressure behind retaining wall is a typical three-dimensional (3D) problem with spatial effects. With the help of limit analysis, this paper firstly deduces the internal energy dissipation power equations and various external forces power equations of the 3D retaining wall under the nonlinear strength condition, such as to establish the work-energy balance equation. The pseudo-static method is used to consider the effect of earthquake on active earth pressure in horizontal state. The failure mode is a 3D curvilinear cone failure mechanism. For the different width of the retaining wall, the plane strain block is inserted in the symmetric plane. By optimizing all parameters, the maximum value of active earth pressure is calculated. In order to verify the validity of the new expressions obtained by the paper, the solutions are compared with previously published solutions. Agreement shows that the new expressions are effective. The results of different parameters are given in the forms of figures to analysis the influence caused by nonlinear strength parameters.

A Study on Fractions and Leaching Potential of Heavy Metals in Abandoned Mine Wastes (휴ㆍ폐광산지역에서 폐재내 중금속의 존재형태 및 용출특성에 관한 연구)

  • 김휘중;양재의;이재영;전상호
    • Journal of Soil and Groundwater Environment
    • /
    • v.8 no.3
    • /
    • pp.45-55
    • /
    • 2003
  • This study investigates the fractional composition and the leaching characteristics of heavy metals in polluted soils due to mining activities. The fractionated composition of heavy metals is classified into five fractions; adsorbed, carbonate, reducible, organic and residual fraction. The status of humic substances in mine wastes of most sites are polyhumic except tailing from Sangdong mine. According to the sequential extraction procedures (SEPs), leaching probabilities of Cd in coal wastes and tailing are relatively low due to high percentage of residual fraction. 46.4% of Ni in tailings from Sangdong mine is probably leached under oxidized environment, and 39.4% of Cu in these tailings is readily extracted under strongly oxidized environment by organic fraction. According to leaching condition of pH 3.0 and pH 5.6, the amount of heavy metals leached out of coal wastes and tailing increases to 1/2 hours. At pH 3.0 and pH 5.6, concentration of Ni in tailing increases up three times of the initial value. Heavy metals released from coal wastes and tailing were not influenced significantly by leaching time.

Reviews on Natural Resources in the Arctic: Petroleum, Gas, Gas Hydrates and Minerals

  • Yoon, Jong-Ryeol;Kim, Yea-Dong
    • Ocean and Polar Research
    • /
    • v.23 no.1
    • /
    • pp.51-62
    • /
    • 2001
  • The Arctic consists of numerous sedimentary basins containing voluminous natural resources and two of the world's major oil and gas producing areas. The western Siberia Basin in the Arctic region has the largest petroliferous province with an area of 800 ${\times}$ 1,200 km and produces more than 60% of total Russian oil production. The North Slope of Alaska produces about 20% of the U.S. output, i.e., 11% of the total U.S. consumption. Being small compared to those regions, the Canadian Northwest Territories and the Pechora Basin in Russia produce only fair amount of oil and natural gas. There are also many promising areas in the northern continental shelf of Russia. In addition to Russia, Svalbard and Greenland have been investigated for oil and gas. Gas hydrates are widespread in both permafrost regions and arctic continental shelf areas. The reserves of gas hydrates in the Arctic Ocean are about 20${\sim}$32% of total estimated amounts of gas hydrates in the world ocean. Mineral mining is well developed, especially in Russia. The major centers are located around the Kuznetsk Basin and Noril'sk. They are major suppliers of gold, tin, nickel, copper, platinum, cobalt, iron ore, coal as well as apatite. There are also some minings of lead-zinc in Alaska and Arctic Canada.

  • PDF