DOI QR코드

DOI QR Code

Comparison of Carbon Storage between Forest Restoration of Abandoned Coal Mine and Natural Vegetation Lands

폐탄광 산림복원지와 자연식생지의 탄소저장량 비교

  • Kim, So-Jin (Division of Forest Ecology, National Institute of Forest Science) ;
  • Jung, Yu-Gyeong (Division of Forest Ecology, National Institute of Forest Science) ;
  • Park, Ki-Hyung (Division of Forest Ecology, National Institute of Forest Science) ;
  • Kim, Ju-Eun (Division of Forest Ecology, National Institute of Forest Science) ;
  • Bae, Jeong-Hyeon (Division of Forest Ecology, National Institute of Forest Science) ;
  • Kang, Won-Seok (Division of Forest Ecology, National Institute of Forest Science)
  • 김소진 (국립산림과학원 산림생태연구과) ;
  • 정유경 (국립산림과학원 산림생태연구과) ;
  • 박기형 (국립산림과학원 산림생태연구과) ;
  • 김주은 (국립산림과학원 산림생태연구과) ;
  • 배정현 (국립산림과학원 산림생태연구과) ;
  • 강원석 (국립산림과학원 산림생태연구과)
  • Received : 2023.09.05
  • Accepted : 2023.09.18
  • Published : 2023.10.30

Abstract

In this study, carbon storage in the aboveground biomass, litter layer, and soil layer was calculated for abandoned mining restoration areas to determine the level of carbon storage after the restoration project through comparison with the ecological reference. Five survey sites were selected for each abandoned mining restoration area in Boryeong-si, Chungcheongnam-do, and the ecological reference that can be a goal and model for the restoration project. The carbon storage in the restoration area was 0~21.3Mg C ha-1, the deciduous layer 3.3~6.0Mg C ha-1, and the soil layer(0-30cm) 8.3~35.1Mg C ha-1, showing a significant difference in carbon storage by target site. The total carbon storage was between 6.1 and 35.3% of the ecological reference, with restoration area ranging from 14.0 to 62.4 Mg C ha-1. The total carbon storage in the restoration area and the ecological reference differed the most in the aboveground biomass and was less than 12%. Based on these results, forest restoration area need to improve the carbon storage of forests through continuous management and monitoring so trees can grow and restore productivity in the early stages of the restoration project. The results of this study can be used as primary data for preparing future forest restoration indicators by identifying the storage of abandoned mining restoration areas.

Keywords

Acknowledgement

본 논문은 국립산림과학원의 산림훼손지 복원을 통한 탄소저장·흡수량 추정 연구(FE0100-2022-01-2023)의 지원으로 수행되었습니다.

References

  1. Ahirwal J and Maiti SK. 2022. Restoring coal mine degraded lands in India for achieving the United natiions-sustainable development goals. Restoration Ecology 30(5): e13606. 
  2. Andoh J.Oduro KA.Park J and Lee Y. 2022. Towards REDD+implementation: Deforestation and forest degradation drivers, REDD+ financing, and readiness activities in participant countries. 
  3. Barragan G.Wang T and Rhemtulla JM. 2022. Trees planted under a global restoration pledge have mixed futures under climate change. Restoration Ecology e13764. 
  4. Cuevas E and Lugo AE. 1998. Dynamics of organic matter and nutrient return from litterfall in stands of ten tropical tree plantation species. Forest Ecology and Management 112: 263-279.  https://doi.org/10.1016/S0378-1127(98)00410-1
  5. Dominati E.Pat erson M and Mackay A. 2010. A framework for classifying and quantifying the natural capital and ecosystem services of soils. Ecological economics 69(9): 1858-1868.  https://doi.org/10.1016/j.ecolecon.2010.05.002
  6. Erbaugh JT.Pradhan N.Adams J.Oldekop JA.Agrawal A.Brockington D.Pritchard R and Chhatre A. 2020. Global forest restoration and the importance of prioritizing local communities. Nature Ecology & Evolution 4(11): 1472-1476.  https://doi.org/10.1038/s41559-020-01282-2
  7. FAO. 2020. Global forest resources assessment 2020-main report. Food and Agriculture Organization(FAO). Rome. 
  8. Feng Y.Wang J.Bai Z and Reading L. 2019. Effects of surface coal mining and land reclamation on soil properties: A review. Earth-Science Reviews 191: 12-25.  https://doi.org/10.1016/j.earscirev.2019.02.015
  9. Gao R.Ai N.Liu G.Liu C.Qiang F.Zhang Z.Xiang T and Zang K. 2022. The Coupling Relationship between Herb Communities and Soil in a Coal Mine Reclamation Area after Different Years of Restoration. Forests 13(9): 1481. 
  10. Gwon JH.Seo HY.Le KS.You BO.Park YB.Jeong JY and Kim CS. 2014. Allometric equations and biomass expansion factors by stand density in Cryptomeria japonica plantations. Journal of Korean Society of Forest Science 103(2): 175-181.  https://doi.org/10.14578/jkfs.2014.103.2.175
  11. Hao J.Guo DG.Li HY and Meng WQ. 2019. Ecological restoration status index for evaluating the restored coal gangue pile: a chronosequence study based on the plant-soil system in the Shanxi mining area, China. Applied Ecology & Environmental Research 17(5). 
  12. Hua F.Bruijnze l LA.Meli P.Martin PA.Zhang J.Nakagawa S.Miao X.Wang W.Mcevoy C.Pena-arancibia JL.Brancalion P.H.S.Smith P.Edwards DP and Balmford A. 2022. The biodiversity and ecosystem service contributions and trade-offs of forest restoration approaches. Science 376(6595): 839-844.  https://doi.org/10.1126/science.abl4649
  13. IPCC. 2003. Good practice guidance for land use, land-use change and forestry. Institute for Global Environmental Strategies. Intergovernmental Panel on Climate Change (IPCC), IPCC/IGES, Hayama, Japan. 
  14. IUCN. 2021. Forest and climate change. International Union for Conservation of Nature(ICUN). Gland. Switzerland. 
  15. Jung MH. Ko JI.Bak GI and Ji WH. 2021. Analysis of soil chemical characteristic changes according to elapsed time after the forest rehabilitation for drawing management of abandoned coal mine forest rehabilitation areas in Gangwon-do. The Korean Society of Economic and Environmental Geology 54(4): 457-464.  https://doi.org/10.9719/EEG.2021.54.4.457
  16. Jung MH.Ko JI.Bak.GI and Ji WH. 2021. Analysis of soil chemical characteristic changes according to elapsed time after the forest rehabilitation for drawing management of abandoned coal mine forest rehabilitation areas in Gangwon-do. Economic and Environmental geology 54(4): 457-464.  https://doi.org/10.9719/EEG.2021.54.4.457
  17. Jung MH.Kwon HH. Kim TH.Choi GS and Kim SL. 2010. Characteristic of soil chemical and microbiological properties in abandoned coal mine forest rehabilitation areas. Korean Journal of Soil Science and Fertilizer 43(5): 424-429. 
  18. Jung MH.Kwon HH.Kim TH..Choi GS and Kim SL. 2010. Characteristics of Soil Chemical and Microbiological Properties inAbandoned Coal Mine Forest Rehabilitation Areas. Korean Society of Soil Science and Fertilizer 43(5): 546-551. 
  19. Jung MH.Park KI..Kim JH and Ji WH. 2023. Assessment of carbon storage capacity of stands in abandoned coal mine forest rehabilitation areas over time for its development of management strategy. Journal of Environmental Science International 32(4): 233-242. 
  20. Jung MH.Shim YS and Kim TH. 2011. Characteristics of soil chemical properties in abandoned coal mine forest rehabilitation areas in Hwasun, south Jeolla province. Korean Society of Soil Science and Fertilizer 44:1010-1015. 
  21. Jung MH.Shim YS.Kim YS.Park MJ and Jung KH. 2015. Characteristics of soil chemical properties in abandoned coal mine forest rehabilitation areas in Boryeong city, Chungcheongnam-do. Korean Society of Soil Science and Fertilizer 48: 744-750.  https://doi.org/10.7745/KJSSF.2015.48.6.744
  22. Kang JT.Son YM.Yim JS and Jeon JH. 2016. Estimation of carbon stock and uptake for Larix kaempferi Lamb. Journal of Climate Change Research 7(4): 499-506.  https://doi.org/10.15531/ksccr.2016.7.4.499
  23. Kim C.Son Y.Le WK..Jeong J and Noh NJ. 2009. Influences of forest tending works on carbon distribution and cycling in a Pinus densiflora S. et Z. stand in Korea. Forest Ecology and Management 257(5): 1420-1426.  https://doi.org/10.1016/j.foreco.2008.12.015
  24. Kim CS.Le KS.Son YM and Cho HS. 2013. Allometric equations and biomass expansion factors in an age-sequence of Black Pine (Pinus thunbergii) stands. Journal of Korean Society of Forest Science 102(4): 543-549.  https://doi.org/10.14578/jkfs.2013.102.4.543
  25. Kim GE.Kim SJ.Kim HJ.Chang HN.Kim HS.Park YH and Son YH. 2020. Estimation of carbon storage in reclaimed coal mines: focus on Betula platyphylla, Pinus koraiensis and Pinus spp. plantations. Korean Journal of Environmental Biology 38(4): 733-743.  https://doi.org/10.11626/KJEB.2020.38.4.733
  26. Kim HJ.Yang JE.Le JY.Choi SI and Jun SH. 2003. Fraction and soil pollution assesment index of heavy metals in cultivated land soils near the abandoned mine. Journal of Soil and Groundwater Environment 8(4): 53-63. 
  27. Kim MI.Park TJ.Ko YJ.Choi GM.Son SC.Kang YJ.Yo JH. Kim MY.Park HJ and Lee WK. 2023. Analysis of changes in tree height-diameter allometry for major tree species in South Korea. Journal of Korean Society of Forest Science 112(1): 71-82. 
  28. Korea Forest Service. 2022. Forest Restoration Implementation Plan. 
  29. Lee CO.Hong SS.Le BT.Kim GS and Yun HS. 2006. Spatial distribution of the dimension stone quarries in Korea. The Journal of the Petrological Society of Korea 15(3): 154-166. 
  30. Lee SK.Son Y.Noh NJ.Heo SJ.Yoon TK..Le AR.Abdul Razak S and Lee WK. 2009. Carbon storage of natural pine and oak pure and mixed forests in Hoengseong, Kangwon. Journal of Korean Society of Forest Science 98(6): 772-779. 
  31. Lee ST.Chung SH and Kim CS. 2022. Carbon Stocks in Tree Biomass and Soils of Quercus acutissima, Q. mongolica, Q. serrata, and Q. variabilis stands. Journal of Korean Society of Forest Science 111(3): 365-373. 
  32. Lim JH.Shin JH.Kim GT.Chun JH and Oh JS. 2003. Forest stand structure, site characteristics and carbon budget of the Kwangneung natural forest in Korea. Korean Journal of Agricultural and Forest Meteorology 5(2): 101-109. 
  33. Martins W.B.R.Lima M.D.R..Junior U.D.O.B.Amorim, L.S.V.B.de Assis Oliveira F and Schwartz G. 2020. Ecological methods and indicators for recovering and monitoring ecosystem after mining: a global literature review. Ecological Engineering 145:105707. 
  34. Moon GH.Mo n NH.Yim JS and Kang JT. 2020. Methodological Consideration for Estimating Growing Stock of Young Forests based on Early Growth Characteristics of Standing Trees in Korea. Journal of Korean Society of Forest Science 109(3): 300-312.  https://doi.org/10.14578/JKFS.2020.109.3.300
  35. Moon GH.Yim JS and Kang JT. 2022. Estimation of Carbon Stocks in Coarse Woody Debris Using Permanent Sample Plot Data from the Korean National Forest Inventory. Journal of Korean Society of Forest Science 13(1): 107-115.  https://doi.org/10.15531/KSCCR.2022.13.1.107
  36. Mun HJ.Kol JI.Bak GI and Ji WH. 2021. Analysis of Soil Chemical Characteristics Changes According to Elapsed Time after the Forest Rehabilitation for Drawing Management of Abandoned Coal Mine Forest Rehabilitation Areas in Gangwon-do. Economic and Environmental Geology 54(4): 457-464.  https://doi.org/10.9719/EEG.2021.54.4.457
  37. National Institute of Forest Science. 2007. Survey manual for forest biomass and soil carbon. National Institute of Forest Science. Seoul. 
  38. National Institute of Forest Science. 2014. Carbon emission factors and biomass allometric equations by species in Korea. National Institute of Forest Science. Seoul. 
  39. Pan Y.Birdsey RA.Fang J.Houghton R.Kaup i PE.Kurz WA.Phil ips OL.Shvidenko A. Lewis SL.Canadel JG.Ciais P.Jackson RB.Pacala SW.McGuire AD.Piao S.Rautiainen A.Sitch S and Hayes D. 2011. A large and persistent carbon sink in the world's forests. Science 333: 988-993.  https://doi.org/10.1126/science.1201609
  40. Park DW.Hong SS.Kim CJ.Le CO.Le BT and Yun HS. 2004. Geology and occurrence of black sandstone and black shale dimension stones, The Korea Society of Economic and Environmental Geology 37(6): 585-601. 
  41. Rodrigue JA and Burger JA. 2004. Forest soil productivity of mined land in the midwestern and eastern coalfield regions. Soil Science Society of America Journal 68(3): 833-844.  https://doi.org/10.2136/sssaj2004.8330
  42. Seo YO.Park SM and Lee YJ. 2012. Analysis of growth and carbon storage for Quercus variabilis stands in Yangpyeong and Gangneung regions. Journal of Agriculture & Life Science 46(1): 43-51. 
  43. Shrestha RK and Lal R. 2011. Changes in physical and chemical properties of soil after surface mining and reclamation. Geoderma 161(3-4): 168-176.  https://doi.org/10.1016/j.geoderma.2010.12.015
  44. Son YM.Kim SW.Le SJ and Kim JS. 2014. Estimation of stand yield and carbon stock for Robinia pseudoacacia stands in Korea. Journal of Korean Society of Forest Science 103(2): 264-269.  https://doi.org/10.14578/jkfs.2014.103.2.264
  45. Son YM.Le KH and Pyo JK. 2011. Development of biomass allometric equations for Pinus densiflora in central region and Quercus variabilis. Journal of Agriculture & Life Science 45(4): 65-72. 
  46. Sourkova M.Frouz J and Santruckova H. 2005. Accumulation of carbon, nitrogen and phosphorus during soil formation on alder spoil heaps after brown-coal mining, near Sokolov (Czech Republic). Geoderma 124: 203-214.  https://doi.org/10.1016/j.geoderma.2004.05.001
  47. Stutler K.Pena-Yewtukhiw E and Skousen J. 2022. Mine soil health on surface mined lands reclaimed to grassland. Geoderma. 413. 115764. 
  48. UNCCD 2022. Global Land Outlook Second edition, Secretariat of the United Nations Convention to Combat Desertification. Bonn.
  49. Vitousek PM. 1982. Nutrient cycling and nutrient usebefficiency. American Naturalist. 119: 553-572.  https://doi.org/10.1086/283931
  50. Wang F.Wang J and Wang Y. 2019. Using multi-fractal and joint multi-fractal methods to characterize spatial variability of reconstructed soil properties in an opencast coal-mine dump in the Loess area of China. Catena, 182, 104111. 
  51. Wang S.Cao Y.Pietrzykowski M.Zhou W.Zhao Z and Bai Z. 2020. Spatial distribution of soil bulk density and its relationship with slope and vegetation allocation model in rehabilitation of dumping site in loess open-pit mine area. Environmental Monitoring and Assessment 192: 1-18.  https://doi.org/10.1007/s10661-019-7904-3
  52. Worlanyo AS and Jiangfeng L. 2021. Evaluating the environmental and economic impact of mining for post-mined land restoration and land-use: A review. Journal of Environmental Management 279: 111623. 
  53. Wu X.Fu D.Duan C.Huang G and Shang H. 2022. Distributions and influencing factors of soil organic carbon fractions under different vegetation restoration conditions in a subtropical mountainous area. SW China. Forests 13(4): 629. 
  54. Zipper CE.Burger JA.Skousen JG.Angel PN.Barton CD.Davis V.Franklin JA. 2011. Restoring Forests and Associated Ecosystem Services on Appalachian Coal Surface Mines. Environmental Management 47(5): 751-765.  https://doi.org/10.1007/s00267-011-9670-z