• Title/Summary/Keyword: coal mining

Search Result 260, Processing Time 0.022 seconds

무연탄 수요예측 및 공장규모 결정에 관한 사례연구

  • 오형술;김명수;박동권;김용택
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 1990.04a
    • /
    • pp.111-124
    • /
    • 1990
  • All most factories producing briquets in Seoul are currently located at residential districts. The coal dusts scattered from these factories are making serious problems in living. To get rid of this environmental pollution, moving thesis factories to places of mining coals is considered now. For doing this project, first, annual briquet demands are forecasted using regression analysis and then, optimal factory capacities to be built are obtained based on forecast demands using LP. To validate factory capacities obtained above simulation is conducted using SLAM II.

  • PDF

레이저를 이용한 가연성 물질의 연소폭발

  • U In Seong;V.A Stamatov;Z. Alawabi;K.D. King;D.K Zhang;Choe Seong-Eul;Hwang Myeong-Hwan
    • Proceedings of the Korean Institute of Industrial Safety Conference
    • /
    • 2001.11a
    • /
    • pp.79-82
    • /
    • 2001
  • The studies of the radiation-induced ignition of combustible atmospheres are of particular importance due to increasing use of optical sensors in industries such as coal mining and petroleum production. Because of the alleged intrinsic safety of such systems, substantial optical power is transmitted through optical fibers in potentially explosive atmospheres. However, there has been little experimental or theoretical research on the safety of optical power delivered by optical fiber systems in combustible atmospheres.(omitted)

  • PDF

A Case Study on the Stability Analysis for the Road Construction above Abandoned Mine (폐광산 상부 도로 안정성 검토 사례)

  • 문상호;나승훈;이상필
    • Tunnel and Underground Space
    • /
    • v.14 no.5
    • /
    • pp.305-317
    • /
    • 2004
  • Due to the steep and narrow characteristic of domestic coal beds, the slant chute caving or sub-level caving method have been mainly adopted in Korea, whereas the long-wall mining has been widely used all around world. However, the slant chute caving or sub-level caving method have disadvantage of not giving much information on the scale and characteristic of abandoned mines. Hence, those information on the abandoned mines in Korea are not easily available. In this study, based on the characteristic investigation of the domestic mining methods, the geological survey and safety analysis were carried out for Donghae highway section 2. Finally, the optimum ground reinforcement methods for that site were selected.

Modeling time-dependent behavior of hard sandstone using the DEM method

  • Guo, Wen-Bin;Hu, Bo;Cheng, Jian-Long;Wang, Bei-Fang
    • Geomechanics and Engineering
    • /
    • v.20 no.6
    • /
    • pp.517-525
    • /
    • 2020
  • The long-term stability of rock engineering is significantly affected by the time-dependent deformation behavior of rock, which is an important mechanical property of rock for engineering design. Although the hard rocks show small creep deformation, it cannot be ignored under high-stress condition during deep excavation. The inner mechanism of creep is complicated, therefore, it is necessary to investigate the relationship between microscopic creep mechanism and the macro creep behavior of rock. Microscopic numerical modeling of sandstone creep was performed in the investigation. A numerical sandstone sample was generated and Parallel Bond contact and Burger's contact model were assigned to the contacts between particles in DEM simulation. Sensitivity analysis of the microscopic creep parameters was conducted to explore how microscopic parameters affect the macroscopic creep deformation. The results show that the microscopic creep parameters have linear correlations with the corresponding macroscopic creep parameters, whereas the friction coefficient shows power function with peak strength and Young's modulus, respectively. Moreover, the microscopic parameters were calibrated. The creep modeling curve is in good agreement with the verification test result. Finally, the creep curves under one-step loading and multi-step loading were compared. This investigation can act as a helpful reference for modeling rock creep behavior from a microscopic mechanism perspective.

Mechanical properties and failure mechanisms of sandstone with pyrite concretions under uniaxial compression

  • Chen, Shao J.;Ren, Meng Z.;Wang, Feng;Yin, Da W.;Chen, Deng H.
    • Geomechanics and Engineering
    • /
    • v.22 no.5
    • /
    • pp.385-396
    • /
    • 2020
  • A uniaxial compression test was performed to analyse the mechanical properties and macroscale and mesoscale failure mechanisms of sandstone with pyrite concretions. The effect of the pyrite concretions on the evolution of macroscale cracks in the sandstone was further investigated through numerical simulations with Particle Flow Code in 2D (PFC2D). The results revealed that pyrite concretions substantially influence the mechanical properties and macroscale and mesoscale failure characteristics of sandstone. During the initial loading stage, significant stress concentrations occurred around the edges of the pyrite concretion accompanied by the preferential generation of cracks. Meanwhile, the events and cumulative energy counts of the acoustic emission (AE) signal increased rapidly because of friction sliding between the concretion and sandstone matrix. As the axial stress increased, the degree of the stress concentration remained relatively unchanged around the edges of the concretions. The cracks continued growing rapidly around the edges of the concretions and gradually expanded toward the centre of the sample. During this stage, the AE events and cumulative energy counts increased quite slowly. As the axial stress approached the peak strength of the sandstone, the cracks that developed around the edges of the concretion started to merge with cracks that propagated at the top-left and bottom-right corners of the sample. This crack evolution ultimately resulted in the shear failure of the sandstone sample around the edges of the pyrite concretions.

Stiffness effect of testing machine indenter on energy evolution of rock under uniaxial compression

  • Tan, Yunliang;Ma, Qing;Wang, Cunwen;Liu, Xuesheng
    • Geomechanics and Engineering
    • /
    • v.30 no.4
    • /
    • pp.345-352
    • /
    • 2022
  • When rock burst occurs, the damaged coal, rock and other fragments can be ejected to the roadway at a speed of up to 10 m/s. It is extremely harmful to personnel and mining equipment, and seriously affects the mining activities. In order to study the energy evolution characteristics, especially kinetic energy, in the process of rock mass failure, this paper first analyzes the energy changes of the rock in different stages under uniaxial compression. The formula of the kinetic energy of rock sample considering the energy from the indenter of the testing machine is obtained. Then, the uniaxial compression tests with different stiffness ratios of the indenter and rock sample are simulated by numerical simulation. The kinetic energy Ud, elastic strain energy Ue, friction energy Uf, total input energy U and surface energy Uθ of crack cracking are analyzed. The results show that: The stiffness ratio has influence on the peak strength, peak strain, Ud, Ue, Uθ, Uf and U of rock samples. The variation trends of strength, strain and energy with stiffness are different. And when the stiffness ratio increases to a certain value, if the stiffness of the indenter continues to increase, it will have no longer effect on the rock sample.

A Finite-difference Modeling of Love Channel Waves in Transversely Isotropic Medium (유한차분식을 이용한 Transverse 이방성(異方性) 매질내 Love채널파동 연구)

  • Cho, Dong-Heng;Lee, Sung-Soo
    • Economic and Environmental Geology
    • /
    • v.27 no.3
    • /
    • pp.281-287
    • /
    • 1994
  • The present paper deals with numerical modeling of Love channel waves in transversely isotropic elastic medium. First, an explicit finite-difference scheme of second order approximation is formulated with the wave equation of SH particle displacement in transversely isotropic medium. Since it is a heterogeneous formulation, it should enable efficient modeling of complex model structures without additional treatment of the internal boundary matching. With a model of isotropic coal seam embedded in high velocity host rock, seismograms are synthesized and tutn out to be essentially identical with published ones of Korn and $St{\ddot{o}}ckl$. Next, anisotropic coal seams are investigated. It is found that the horizontal velocity of the seam appears to play a major role of determining the group velocity of Love channel waves. The group velocity increases with the increase of the horizontal velocity or vice versa. However, further study will be needed to exploit fully Love channel waves for the determination of lithology, stratification, fracture in sedimentary rocks, for instance, for hydrocarbon exploration and development.

  • PDF

Damage characterization of hard-brittle rocks under cyclic loading based on energy dissipation and acoustic emission characteristics

  • Li, Cheng J.;Lou, Pei J.;Xu, Ying
    • Geomechanics and Engineering
    • /
    • v.31 no.4
    • /
    • pp.365-373
    • /
    • 2022
  • In order to investigate the damage evolution law of rock specimens under cyclic loading, cyclic loading tests under constant loads with different amplitudes were carried out on limestone specimens with high strength and brittleness values using acoustic emission (AE) technology and the energy evolution and AE characteristics were evaluated. Based on dissipated energy density and AE counts, the damage variable of specimen was characterized and two damage evolution processes were analyzed and compared. The obtained results showed that the change of AE counts was closely related to radial deformation. Higher cyclic loading values result in more significant radial strain of limestone specimen and larger accumulative AE counts of cyclic loading segment, which indicated Felicity effect. Regarding dissipated energy density, the damage of limestone specimen was defined without considering the influence of radial deformation, which made the damage value of cyclic loading segment higher at lower amplitude loads. The damage of cyclic loading segment was increased with the magnitude of load. When dissipated energy density was applied to define damage, the damage value at unloading segment was smaller than that of AE counts. Under higher cyclic loading values, rocks show obvious damage during both loading and unloading processes. Therefore, during deep rock excavation, the damages caused by the deformation recovery of unloading rocks could not be ignored when considering the damage caused by abutment pressure.

Relationship of box counting of fractured rock mass with Hoek-Brown parameters using particle flow simulation

  • Ning, Jianguo;Liu, Xuesheng;Tan, Yunliang;Wang, Jun;Tian, Chenglin
    • Geomechanics and Engineering
    • /
    • v.9 no.5
    • /
    • pp.619-629
    • /
    • 2015
  • Influenced by various mining activities, fractures in rock masses have different densities, set numbers and lengths, which induce different mechanical properties and failure modes of rock masses. Therefore, precisely expressing the failure criterion of the fractured rock influenced by coal mining is significant for the support design, safety assessment and disaster prevention of underground mining engineering subjected to multiple mining activities. By adopting PFC2D particle flow simulation software, this study investigated the propagation and fractal evolution laws of the micro cracks occurring in two typical kinds of rocks under uniaxial compressive condition. Furthermore, it calculated compressive strengths of the rocks with different confining pressures and box-counting dimensions. Moreover, the quantitative relation between the box-counting dimension of the rocks and the empirical parameters m and s in Hoek-Brown strength criterion was established. Results showed that with the increase of the strain, the box-counting dimension of the rocks first increased slowly at the beginning and then exhibited an exponential increase approximately. In the case of small strains of same value, the box-counting dimensions of hard rocks were smaller than those of weak rocks, while the former increased rapidly and were larger than the latter under large strain. The results also presented that there was a negative correlation between the parameters m and s in Hoek-Brown strength criterion and the box-counting dimension of the rocks suffering from variable mining activities. In other words, as the box-counting dimensions increased, the parameters m and s decreased linearly, and their relationship could be described using first order polynomial function.

Rare Earth Elements (REE)-bearing Coal Deposits: Potential of Coal Beds as an Unconventional REE Source (함희토류 탄층: 비전통적 희토류 광체로서의 가능성에 대한 고찰)

  • Choi, Woohyun;Park, Changyun
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.241-259
    • /
    • 2022
  • In general, the REE were produced by mining conventional deposits, such as the carbonatite or the clay-hosted REE deposits. However, because of the recent demand increase for REE in modern industries, unconventional REE deposits emerged as a necessary research topic. Among the unconventional REE recovery methods, the REE-bearing coal deposits are recently receiving attentions. R-types generally have detrital originations from the bauxite deposits, and show LREE enriched REE patterns. Tuffaceous-types are formed by syngenetic volcanic activities and following input of volcanic ash into the basin. This type shows specific occurrence of the detrital volcanic ash-driven minerals and the authigenic phosphorous minerals focused at narrow horizon between coal seams and tonstein layers. REE patterns of tuffaceous-types show flat shape in general. Hydrothermal-types can be formed by epigenetic inflow of REE originated from granitic intrusions. Occurrence of the authigenic halogen-bearing phosphorous minerals and the water-bearing minerals are the specific characteristics of this type. They generally show HREE enriched REE patterns. Each type of REE-bearing coal deposits may occur by independent genesis, but most of REE-bearing coal deposits with high REE concentrations have multiple genesis. For the case of the US, the rare earth oxides (REO) with high purity has been produced from REE-bearing coals and their byproducts in pilot plants from 2018. Their goal is to supply about 7% of national REE demand. For the coal deposits in Korea, lignite layers found in Gyungju-Yeongil coal fields shows coexistence of tuff layers and coal seams. They are also based in Tertiary basins, and low affection from compaction and coalification might resulted into high-REE tuffaceous-type coal deposits. Thus, detailed geologic researches and explorations for domestic coal deposits are required.