• Title/Summary/Keyword: co-simulation

Search Result 3,291, Processing Time 0.037 seconds

The simulation of high efficiency amorphous silicon thin film solar cells by p-layer optimizations (p-layer 최적화를 통한 고효율 비정질 실리콘 박막태양전지 설계 simulation 실험)

  • Park, S.M.;Lee, Y.S.;Lee, B.S.;Lee, D.H.;Yi, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 2009.04b
    • /
    • pp.256-258
    • /
    • 2009
  • 현재 상용화되어 있는 결정질 태양전지의 경우 높은 실리콘 가격으로 인해 저가격화에 어려움을 격고 있다. 따라서 태양전지 저가화의 한 방법으로 박막태양전지가 주목을 받고 있다. P-I-N 구조의 박막태양전지에서 각 층의 thickness, activation energy, energy bandgap은 고효율 달성을 위한 중요한 요소이다. 본 논문에서는 박막태양전지 p-layer의 가변을 통하여 고효율을 달성하기 위한 simulation을 수행하였다. 가변 조건으로는 thickness $5\sim25nm$, activation energy $0.3\sim0.6$ eV 그리고 energy bandgap $1.6\sim1.8$ eV까지 단계별로 변화시켰다. 최종 simulation 결과 p-layer의 thickness 5nm, activation energy 0.3 eV 그리고 energy bandgap 1.8 eV에서 최고 효율 11.08%를 달성하였다.

  • PDF

Full Dynamic Model in the Loop Simulation for Path Tracking Control of a 6$\times$6 Mobile Robot (6$\times$6 이동로봇의 경로추종을 위한 동역학 시뮬레이션)

  • Huh, Jin-Wook
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.11 no.4
    • /
    • pp.141-148
    • /
    • 2008
  • In this paper, we develop a detailed full dynamic model which includes various rough terrains for 6-wheel skid-steering mobile robot based on the real experimental autonomous vehicle called Dog-Horse Robot. We also design a co-simulation for performance comparison of path tracking algorithms. The control architecture in the co-simulation can be divided into two levels. The high level control is the closed-loop control of path tracking to follow a given path, and the low level is concerned about torque control of wheel motion. The simulation using the mechanical data of the Dog-Horse Robot is performed under the Matlab/Simulink environment. We also simulate and evaluate the performance of the model based adaptive controller.

Determination of Proper Time Step for Molecular Dynamics Simulation

  • Jo, Jong Cheol;Kim, Byeong Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.4
    • /
    • pp.419-424
    • /
    • 2000
  • In this study we have investigated the determination of proper time step in molecular dynamics simulation.Since the molecular dynamics is mathematically related to nonlinear dynamics, the analysis of eigenvalues isused to explain the relationship between the time step and dynamics. The tracings of H2 and CO2 molecular dynamics simulation agrees very well with the analytical solutions. For H2, the time step less than 1.823 fs pro-vides stable dynamics. ForCO2, 3.808 fs might be the maximum time step for proper molecular dynamics. Al-though this results were derived for most simple cases of hydrogen and carbon dioxide, we could quantitatively explain why improperly large time step destroyed the molecular dynamics. From this study we could set the guide line of the proper time step for stable dynamics simulation in molecular modeling software.

3-Dimensional Thermoforming Computer Simulation Considering Orthotropic Property of Film

  • Son, Hyun-Myung;Yoon, Seok-Ho;Lee, Ki-Ho;Lyu, Min-Young
    • Elastomers and Composites
    • /
    • v.57 no.3
    • /
    • pp.114-120
    • /
    • 2022
  • The tensile properties of the extruded PC film were measured in the extrusion direction and perpendicular to the extrusion direction. The measured properties were the elastic modulus and Poisson's ratio at the glass transition temperature of PC. The measured orthotropic properties of the film were used for the computer simulation of vacuum forming. In this simulation, three mold shapes were tested: dome, trapezoid, and cubic, and the vacuum was applied between the mold surface and the heated film. The stress, strain, thickness, and stretch ratio distributions of the film in different mold shapes were observed and compared. The thermoforming simulation method used in this study and the obtained results, considering the determined orthotropic properties, can be applied to the thermoforming of various three-dimensional shapes.

The Transfer Characteristics of $CO_2$ Extinguishant According with the Location of Fire Plume (화재위치에 따른 $CO_2$소화제 전달특성)

  • 박찬수;최주석
    • Fire Science and Engineering
    • /
    • v.17 no.4
    • /
    • pp.28-35
    • /
    • 2003
  • To analyze the transfer characteristics of $CO_2$ extinguishant when extinguishant is injected into a closed space similar to a marine engine room, a numerical simulation was performed. Flow and Concentration fields are calculated according with the variation of the fire plume,s location. The results show that tile variation of fire plumes, location greatly effected on the flow patterns and the characteristics of $CO_2$ extinguishant transfer. In case of the fire plume located at left region of the 2nd floor center in the engine room consisted of first and second floor, The effects similar to the air curtain is found and cut off the mass transfer. In the characteristics with hight, the iso-concentration line below the extinguishable limit is formed in the left region of the 1st and 2nd floor center after the $CO_2$ extinguishant is completely injected. therefore I think that the results of this study are considered to arrange the $CO_2$ injection nozzles for the $CO_2$ fire fighting equipments.

Hardware/Software Co-verification with Integrated Verification (집적검증 기법을 채용한 하드웨어/소프트웨어 동시검증)

  • Lee, Young-Soo;Yang, Se-Yang
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.8 no.3
    • /
    • pp.261-267
    • /
    • 2002
  • In SOC(System On a Chip) designs, reducing time and cast for design verification is the most critical to improve the design productivity. this is mainly because the designs require co-verifying HW together with SW, which results in the increase of verification complexity drastically. In this paper, to cope with the verification crisis in SOC designs, we propose a new verification methodology, so called integrated co-verification, which lightly combine both co-simulation and co-emulation in unified and seamless way. We have applied our integrated co-verification to ARM/AMBA platform-based co-verification environment with a commercial co-verification tool, Seamless CVE, and a physical prototyping board. The experiments has shown clear advantage of the proposed technique over conventional ones.

Microsecond molecular dynamics simulations revealed the inhibitory potency of amiloride analogs against SARS-CoV-2 E viroporin

  • Jaber, Abdullah All;Chowdhury, Zeshan Mahmud;Bhattacharjee, Arittra;Mourin, Muntahi;Keya, Chaman Ara;Bhuyan, Zaied Ahmed
    • Genomics & Informatics
    • /
    • v.19 no.4
    • /
    • pp.48.1-48.10
    • /
    • 2021
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes small envelope protein (E) that plays a major role in viral assembly, release, pathogenesis, and host inflammation. Previous studies demonstrated that pyrazine ring containing amiloride analogs inhibit this protein in different types of coronavirus including SARS-CoV-1 small envelope protein E (SARS-CoV-1 E). SARS-CoV-1 E has 93.42% sequence identity with SARS-CoV-2 E and shared a conserved domain NS3/small envelope protein (NS3_envE). Amiloride analog hexamethylene amiloride (HMA) can inhibit SARS-CoV-1 E. Therefore, we performed molecular docking and dynamics simulations to explore whether amiloride analogs are effective in inhibiting SARS-CoV-2 E. To do so, SARS-CoV-1 E and SARS-CoV-2 E proteins were taken as receptors while HMA and 3-amino-5-(azepan-1-yl)-N-(diaminomethylidene)-6-pyrimidin-5-ylpyrazine-2-carboxamide (3A5NP2C) were selected as ligands. Molecular docking simulation showed higher binding affinity scores of HMA and 3A5NP2C for SARS-CoV-2 E than SARS-CoV-1 E. Moreover, HMA and 3A5NP2C engaged more amino acids in SARS-CoV-2 E. Molecular dynamics simulation for 1 ㎲ (1,000 ns) revealed that these ligands could alter the native structure of the proteins and their flexibility. Our study suggests that suitable amiloride analogs might yield a prospective drug against coronavirus disease 2019.

Modification of CRACKER-a PC based furnaces simulator

  • Heejin Lim;Kim, Do-Jun;Yang, Jae-Young;Park, Joon-Taek;Park, Sunwon
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.69.4-69
    • /
    • 2002
  • 1. Introduction 2. Fundamental Model 3. Simulation Procedure 4. Results 5. Conclusion

  • PDF