• Title/Summary/Keyword: co-precipitation

Search Result 940, Processing Time 0.028 seconds

Highly dispersed $Ru/{\alpha}-Al_2O_3$ Catalyst development for selective CO oxidation reaction (선택적 CO 산화반응을 위한 고분산된 $Ru/{\alpha}-Al_2O_3$ 촉매개발)

  • Eom, HyunJi;Koo, KeeYoung;Jung, UnHo;Rhee, YoungWoo;Yoon, WangLai
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.06a
    • /
    • pp.228.1-228.1
    • /
    • 2010
  • 선택적 CO 산화반응(PrOx)을 위한 Ru이 고분산 담지된 $Ru/{\alpha}-Al_2O_3$ 촉매를 증착-침전법(deposition-precipitation)으로 제조하였다. 용액의 pH와 aging 시간에 따른 Ru 입자의 크기 변화와 분산도의 영향을 살펴보았으며 함침법(impregnation)으로 비교 촉매를 제조하였다. 촉매의 특성분석은 BET, TPR, CO-Chemisorption분석을 수행하여 촉매의 비표면적, 환원특성, 분산도를 알 수 있었다. 특성분석결과, 증착-침전법으로 제조한 $Ru/{\alpha}-Al_2O_3$ 촉매가 함침법으로 제조한 촉매에 비해 분산도가 높았으며, pH별 촉매 제조에서는 pH6.5로 제조한 촉매가 22.06%로 가장 높은 분산도를 보였다. 또한, 담체의 비표면적 영향에 따른 Ru 입자의 분산도를 살펴보기 위해 ${\gamma}-Al_2O_3$${\alpha}-Al_2O_3$ 담체를 적용한 결과, 비표면적이 작은 ${\alpha}-Al_2O_3$ 담체 표면에서 Ru 분산도가 ${\gamma}-Al_2O_3$ 담체에 비해 높았다. 이는 기공이 발달하여 비표면적이 넓은 ${\gamma}-Al_2O_3$ 담체는 소량의 Ru을 고분산 담지 시 담체 표면보다는 기공 내에 담지 되는 양이 많아 실제 반응 시 반응에 참여하는 표면 활성 금속양이 적음을 알 수 있다. 특히, 선택적 산화반응과 같이 표면에서 빠른 반응이 일어나는 경우, 기공 내부의 활성금속이 반응에 참여하기 어려워 반응 활성이 낮음을 PrOx 반응실험을 통해 확인할 수 있었다. PrOx test 조건은 GHSV 250000~60000, 온도는 80~200도, 람다값은 2~4로 성능 비교하여 실험 하였다. PrOx의 성능평가 결과 담체를 ${\alpha}-Al_2O_3$를 사용하여 deposition-precipitation방법으로 제조한 pH6.5 촉매에서 $100{\sim}160^{\circ}C$에서 90%의 가장 높은 CO conversion을 가지고 18%의 선택도를 가졌다.

  • PDF

Effect of Precipitants and Precipitation Conditions on Synthesis of β-Ga2O3 Powder (침전제의 종류 및 침전 공정의 변화가 β-Ga2O3 분말 합성에 미치는 영향)

  • Hwang, Su Hyun;Choi, Young Jong;Ko, Jeong Hyun;Kim, Tae Jin;Jeon, Deok Il;Cho, Woo Suk;Han, Kyu Sung
    • Korean Journal of Materials Research
    • /
    • v.24 no.4
    • /
    • pp.214-220
    • /
    • 2014
  • In this research, a precipitation method was used to synthesize ${\beta}-Ga_2O_3$ powders with various particle morphologies and sizes under varying precipitation conditions, such as gallium nitrate concentration, pH, and aging temperature, using ammonium hydroxide and ammonium carbonate as precipitants. The obtained powders were characterized in detail by XRD, SEM, FT-IR, and TG-DSC. From the TG-DSC result, GaOOH phase was transformed to ${\beta}-Ga_2O_3$ at around $742^{\circ}C$, and weight loss percent was about 14 % when $NH_4OH$ was used as a precipitant. Also, ${\beta}-Ga_2O_3$ formed at $749^{\circ}C$ and weight loss percent was about 15 % when $(NH)_2CO_3$ was used as a precipitant. XRD results showed that the obtained $Ga_2O_3$ had pure monoclinic phase in both cases. When $(NH)_2CO_3$ was used as a precipitant, the particle shape changed and became irregular. The range of particle size was about $500nm-4{\mu}m$ based on various concentrations of gallium nitrate solution with $NH_4OH$. The particle size was increased from $1-2{\mu}m$ to $3-4{\mu}m$ and particle shape was changed from spherical to bar type by increasing aging temperature over $80^{\circ}C$.

Effects of pH Control Agent and Co-Precipitate Washing Agent on Nickel Ferrite Preparation by Co-Precipitation Method (공침법에 의한 Nickel Ferrite의 분말제조에서 pH-조절제 및 공침물-세척제의 영향)

  • Jeong, Hong-Ho;Seong, Gi-Ung
    • Korean Journal of Materials Research
    • /
    • v.10 no.6
    • /
    • pp.445-449
    • /
    • 2000
  • Nickel ferrite $(Ni_{0.75}Fe_{2.25}O_4$ was synthesized by co-precipitation method in order to investigate its behavior under conditions of the reactor coolant system in pressurized light water nuclear power plants. Ammonia or potassium carbonate was used as a solution pH control agent, and aqueous ammonia or potassium carbonate solution or secondary distilled water was used as a co-precipitate washing agent. The effects of the pH control agent and the co-precipitate washing agent on the production yield on the basis of the Ni/Fe molar ratio and the particle characteristics of final products were investigated by XRD, SEM, EDX and XPS. The production yield was almost congruent with that of the initial aqueous mixture in case of using potassium carbonate as a pH control agent, while in case of using ammonia, it was quite changed. The difference seemed to be due to the effects of $Ni^{2+}{\leftarrow}NH_3$complexation in the aqueous solution and of the pH of co-precipitate washing agent.

  • PDF

Precipitation of Acetaminophen in Supercritical Carbon Dioxide (초임계 이산화탄소 내에서 아세트아미노펜 미세입자 제조)

  • Choi, Sungwoo;Oh, Kyungshil;Kim, Hwayong
    • Clean Technology
    • /
    • v.10 no.4
    • /
    • pp.215-220
    • /
    • 2004
  • Micronized acetaminophen was precipitated from ethanol solution using supercritical $CO_2$ as antisolvent. A coaxial nozzle was used to introduce the supercritical $CO_2$ and the acetaminophen/ethanol solution. The effects of pressure, temperature, $CO_2$ flow rate and solvent flow rate were studied in the constant pressure and temperature condition. The particle size and morphology were influenced by the variations of precipitation condition. The particle size and morphology were analyzed with scanning electron microscopy.

  • PDF

Dependence of Structural and Magnetic Properties on Annealing Times in Co-precipitated Cobalt Ferrite Nanoparticles

  • Purnama, Budi;Rahmawati, Rafika;Wijayanta, Agung Tri;Suharyana, Suharyana
    • Journal of Magnetics
    • /
    • v.20 no.3
    • /
    • pp.207-210
    • /
    • 2015
  • Modifications in the structural and magnetic properties of co-precipitated cobalt ferrite nanoparticles can be accomplished by varying the annealing time periods during the synthetic process. Experimental results show that high-purity cobalt ferrite nanoparticles are obtained using a co-precipitation process. The dependence of the crystallite sizes on the annealing time was successfully demonstrated using XRD and SEM. Finally, vibrating sample magnetometer analyses show that the magnetic properties of the cobalt ferrite nanoparticles depend on their relative particle sizes.

A Precipitation of Ammonium Uranyl Carbonate from Uranylnitrate Solution (UO$_2$(NO$_3$)$_2$ 용액으로부터 Ammonium Uranyl Carbonate 제조)

  • 김응호;김형수;이규암;유재형;최청송
    • Journal of the Korean Ceramic Society
    • /
    • v.35 no.6
    • /
    • pp.559-568
    • /
    • 1998
  • Studies of preparation condition and characteristics of AUC(ammonium uranyl carbonate) were carried out to optimize AUC process with different reactor sizes and precipitation methos. As results four types of precipitates with different chemical compositions and morphologies were obtained from the reaction of {{{{ {(NH }_{4 }) { }_{2 } {CO }_{3 } }} with {{{{ {UO }_{2 }( {NO }_{3 }) { }_{2 } }} solution. A phase diagram has been made and crystal structure and chemical composition of each phase have been characterized by using SEM X-ray IR and thermal analysis. It was found that ammonium uranyl carbonate {{{{ {(NH }_{4 }) { }_{4 } {UO }_{2 } {(CO }_{3 }) { }_{3 } }} with monoclinic crystal morphology could be syn-thesized when the mole ratio of in {{{{ {(NH }_{4 }) { }_{2 } {CO }_{3 }/ {UO }_{2 } {(NO }_{3 }) { }_{2 } }} in the solution was higher than 5 Also a mechanism and a precipitating condition on rounding of the AUC particle were examined in the course of the AUC pre-cipitation. The rounding of the AUC particle was possible only by external circulation using pump not by internal circulation using agitator.

  • PDF

Structural and Magnetic Properties of Cr-Zn Nanoferrites Synthesized by Chemical Co-Precipitation Method

  • Powar, Rohit R.;Phadtare, Varsha D.;Parale, Vinayak G.;Pathak, Sachin;Piste, Pravina B.;Zambare, Dnyandevo N.
    • Journal of the Korean Ceramic Society
    • /
    • v.56 no.5
    • /
    • pp.474-482
    • /
    • 2019
  • Chromium-doped zinc ferrite nanoparticles with the general formula CryZnFe2-yO4 (y = 0, 0.025, 0.05, 0.075, and 0.1) were synthesized by a surfactant-assisted chemical co-precipitation route using metal nitrate salt precursors. The phase purity and structural parameters were determined by powder X-ray diffraction. The concentration of Cr3+ doped into ZnFe2O4 (ZF) noticeably affected the crystallite size, which was in the range of 22 nm to 36 nm, and all samples showed a single cubic spinel structure without any secondary phase or impurities. The lattice parameter, X-ray density, and skeletal density increased with an increase in the Cr-doping concentration; on the other hand, a decreasing trend was observed for the particle size and porosity. The influence of Cr3+ substitution on ZF magnetic properties were studied under an applied field of 15 kOe. The overall results revealed that the incorporation of a small amount of Cr dopant changed the structural, electrical, and magnetic properties of ZF.

Experimental study on Microbially Induced Calcite Precipitation for expansive soil stabilization

  • Zheng Lu;Yu Qiu;Jie Liu;Chengcheng Yu; Hailin Yao
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.85-96
    • /
    • 2023
  • Microbially induced carbonate precipitation (MICP) is extensively discussed as a promising topic for ground stabilization. The practical effect of stabilizing the expansive soil is presented in this paper with a logical process from the bacterial activity to the treatment technology. Temperature, pH, shaking frequency, and inoculation amount are discussed to evaluate the bacterial activity. The physic-mechanic properties are also evaluated to discuss the effect of the MICP process on expansive soil. Results indicate that the MICP method achieves the mitigation of expansion. The treated soil has a low proportion of fine particles (< 5 ㎛), the plasticity index significantly decreases, and strength values improve much. MICP process has a significant cementation effect on the soil matrix. Moreover, the infiltration model test presents the coating effect on the topsoil. According to the relation between the CaCO3 content and the treatment effect, the topsoil has better treatment than the deeper soil.

Effect of Additives for Prevention of NaBO2 Precipitation on Hydrogen Generation Properties of NaBH4 Hydrolysis (NaBO2의 석출 방지를 위한 첨가제가 NaBH4 가수분해의 수소발생특성에 미치는 영향)

  • Oh, Taekyun;Kwon, Sejin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.24 no.1
    • /
    • pp.1-11
    • /
    • 2013
  • Additives such as glycerol, methanol, acetone, and ethanol were used to prevent $NaBO_2$ from precipitation, and their effects on hydrogen generation properties of $NaBH_4$ hydrolysis were investigated. When the concentration of additives was 5 wt%, the additives such as methanol, acetone, and ethanol could not prevent $NaBO_2$ precipitation. Although glycerol prevented $NaBO_2$ precipitation, conversion efficiency decreased to 78.0% due to its viscosity. Based on test results, hydrogen generation tests were also performed at various concentration of glycerol and methanol to investigate the concentration effects on hydrogen generation properties. As the concentration of glycerol increased from 1 wt% to 3 wt%, conversion efficiency increased owing to additive effect. When its concentration increased to 5 wt%, conversion efficiency decreased due to its viscosity. As the concentration of methanol increased from 5 wt% to 10 wt%, conversion efficiency increased owing to additive effect. When its concentration increased to 15 wt%, conversion efficiency decreased due to $NaB(OCH_3)_4$ precipitate. Although conversion efficiency decreased about 1% when 3 wt% glycerol was added, $NaBO_2$ precipitation was prevented. Consequently, addition of 3 wt% glycerol to $NaBH_4$ solution improves stability of hydrogen generation system.