Browse > Article
http://dx.doi.org/10.3740/MRSK.2014.24.4.214

Effect of Precipitants and Precipitation Conditions on Synthesis of β-Ga2O3 Powder  

Hwang, Su Hyun (TSM Co.Ltd.)
Choi, Young Jong (TSM Co.Ltd.)
Ko, Jeong Hyun (TSM Co.Ltd.)
Kim, Tae Jin (TSM Co.Ltd.)
Jeon, Deok Il (TSM Co.Ltd.)
Cho, Woo Suk (KICET)
Han, Kyu Sung (KICET)
Publication Information
Korean Journal of Materials Research / v.24, no.4, 2014 , pp. 214-220 More about this Journal
Abstract
In this research, a precipitation method was used to synthesize ${\beta}-Ga_2O_3$ powders with various particle morphologies and sizes under varying precipitation conditions, such as gallium nitrate concentration, pH, and aging temperature, using ammonium hydroxide and ammonium carbonate as precipitants. The obtained powders were characterized in detail by XRD, SEM, FT-IR, and TG-DSC. From the TG-DSC result, GaOOH phase was transformed to ${\beta}-Ga_2O_3$ at around $742^{\circ}C$, and weight loss percent was about 14 % when $NH_4OH$ was used as a precipitant. Also, ${\beta}-Ga_2O_3$ formed at $749^{\circ}C$ and weight loss percent was about 15 % when $(NH)_2CO_3$ was used as a precipitant. XRD results showed that the obtained $Ga_2O_3$ had pure monoclinic phase in both cases. When $(NH)_2CO_3$ was used as a precipitant, the particle shape changed and became irregular. The range of particle size was about $500nm-4{\mu}m$ based on various concentrations of gallium nitrate solution with $NH_4OH$. The particle size was increased from $1-2{\mu}m$ to $3-4{\mu}m$ and particle shape was changed from spherical to bar type by increasing aging temperature over $80^{\circ}C$.
Keywords
GaOOH; ${\beta}-Ga_2O_3$; ammonium hydroxide; ammonium carbonate; calcination;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. W. Laubengayer, H. R. Engle, J. Am. Chem. Soc., 61(5), 1210 (1939).   DOI
2 S. Sharma, M. K. Sunkara, J. Am. Chem. Soc., 124(41), 12288 (2002).   DOI   ScienceOn
3 T. Sato, T. Nakamura, Thermochim. Acta., 53(3), 281 (1982).   DOI   ScienceOn
4 R. Roy, V. G. Hill, E. F. Osborn, J. Am. Chem. Soc., 74(3), 719 (1952).   DOI
5 M. Fleischer, L. Hollbauer, E. Born, H. Meixner, J. Am. Ceram. Soc., 80(8), 2121 (1997).
6 Y. H. Gao, Y. Bando, T. Sato, Y. F. Zhang, X. Q. Gao, Appl. Phys. Lett., 81(12), 2267 (2002).   DOI   ScienceOn
7 J. Zhang, F. H. Jiang, Y. D. Yang, J. P. Li, J. Phys. Chem. B., 109(27), 13143 (2005).   DOI   ScienceOn
8 A. C. Tas, P. J. Majewski, F. Aldinger, J. Am. Chem. Soc., 85(6), 1421 (2002).
9 M. Ogita, N. Saika, Y. Nakanishi, Y. Hatanaka, Appl. Surf. Sci., 142(1-4), 188 (1999).   DOI   ScienceOn
10 B. Xu, B. Zheng, W. Hua, Y. Yue, Z. Gao, J. Catal., 239(2), 470 (2006).   DOI   ScienceOn
11 K. Nakagawa, C. Kajita, K. Okumura, N. Ikenaga, M. Nishitani-Gamo, T. Ando, T. Kobayashi, T. Suzuki, J. Catal., 203(1), 87 (2001).   DOI   ScienceOn
12 A. L. Petre, A. Auroux, P. Gelin, M. Caldararu, N. I. Ionescu, Thermochim. Acta., 379(1-2), 177 (2001).   DOI   ScienceOn
13 U. Rambabu, N. R. Munirathnam, T. L. Prakash, B. Vengalrao, S. Buddhudu, J. Mater. Sci.(:Mater. Electron.,) 42(22), 9262 (2007).
14 M. Ristic, S. Popovic, S. Music, Mater. Res. Lett., 59(10), 1227 (2005).   DOI   ScienceOn
15 H. Kurokawa, Mater. Sci. Eng., 202(1-2), 201 (1995).   DOI   ScienceOn
16 L. Fu, Y. Q. Liu, P. Hu, K. Xiao, G. Yu, D. B. Zhu, Chem. Mater., 15(22), 4287 (2003).   DOI   ScienceOn
17 L. Binet, D. Gourier, C. Minot, J. Solid State. Chem., 113(2), 420 (1994).   DOI   ScienceOn
18 J. Zhang, Z. Liu, C. Lin, J. Lin, J. C, J. Cryst. Growth., 280(1-2), 99 (2005).   DOI   ScienceOn
19 T. Weh, J. Frank, M. Fleischer, H. Meixner, Sens. Actuators B., 78(1-3), 202 (2001).   DOI   ScienceOn