• Title/Summary/Keyword: co-occurrence words

Search Result 74, Processing Time 0.032 seconds

Analysis of Research Trends of 'Word of Mouth (WoM)' through Main Path and Word Co-occurrence Network (주경로 분석과 연관어 네트워크 분석을 통한 '구전(WoM)' 관련 연구동향 분석)

  • Shin, Hyunbo;Kim, Hea-Jin
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.3
    • /
    • pp.179-200
    • /
    • 2019
  • Word-of-mouth (WoM) is defined by consumer activities that share information concerning consumption. WoM activities have long been recognized as important in corporate marketing processes and have received much attention, especially in the marketing field. Recently, according to the development of the Internet, the way in which people exchange information in online news and online communities has been expanded, and WoM is diversified in terms of word of mouth, score, rating, and liking. Social media makes online users easy access to information and online WoM is considered a key source of information. Although various studies on WoM have been preceded by this phenomenon, there is no meta-analysis study that comprehensively analyzes them. This study proposed a method to extract major researches by applying text mining techniques and to grasp the main issues of researches in order to find the trend of WoM research using scholarly big data. To this end, a total of 4389 documents were collected by the keyword 'Word-of-mouth' from 1941 to 2018 in Scopus (www.scopus.com), a citation database, and the data were refined through preprocessing such as English morphological analysis, stopwords removal, and noun extraction. To carry out this study, we adopted main path analysis (MPA) and word co-occurrence network analysis. MPA detects key researches and is used to track the development trajectory of academic field, and presents the research trend from a macro perspective. For this, we constructed a citation network based on the collected data. The node means a document and the link means a citation relation in citation network. We then detected the key-route main path by applying SPC (Search Path Count) weights. As a result, the main path composed of 30 documents extracted from a citation network. The main path was able to confirm the change of the academic area which was developing along with the change of the times reflecting the industrial change such as various industrial groups. The results of MPA revealed that WoM research was distinguished by five periods: (1) establishment of aspects and critical elements of WoM, (2) relationship analysis between WoM variables, (3) beginning of researches of online WoM, (4) relationship analysis between WoM and purchase, and (5) broadening of topics. It was found that changes within the industry was reflected in the results such as online development and social media. Very recent studies showed that the topics and approaches related WoM were being diversified to circumstantial changes. However, the results showed that even though WoM was used in diverse fields, the main stream of the researches of WoM from the start to the end, was related to marketing and figuring out the influential factors that proliferate WoM. By applying word co-occurrence network analysis, the research trend is presented from a microscopic point of view. Word co-occurrence network was constructed to analyze the relationship between keywords and social network analysis (SNA) was utilized. We divided the data into three periods to investigate the periodic changes and trends in discussion of WoM. SNA showed that Period 1 (1941~2008) consisted of clusters regarding relationship, source, and consumers. Period 2 (2009~2013) contained clusters of satisfaction, community, social networks, review, and internet. Clusters of period 3 (2014~2018) involved satisfaction, medium, review, and interview. The periodic changes of clusters showed transition from offline to online WoM. Media of WoM have become an important factor in spreading the words. This study conducted a quantitative meta-analysis based on scholarly big data regarding WoM. The main contribution of this study is that it provides a micro perspective on the research trend of WoM as well as the macro perspective. The limitation of this study is that the citation network constructed in this study is a network based on the direct citation relation of the collected documents for MPA.

A Study of 'Emotion Trigger' by Text Mining Techniques (텍스트 마이닝을 이용한 감정 유발 요인 'Emotion Trigger'에 관한 연구)

  • An, Juyoung;Bae, Junghwan;Han, Namgi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.2
    • /
    • pp.69-92
    • /
    • 2015
  • The explosion of social media data has led to apply text-mining techniques to analyze big social media data in a more rigorous manner. Even if social media text analysis algorithms were improved, previous approaches to social media text analysis have some limitations. In the field of sentiment analysis of social media written in Korean, there are two typical approaches. One is the linguistic approach using machine learning, which is the most common approach. Some studies have been conducted by adding grammatical factors to feature sets for training classification model. The other approach adopts the semantic analysis method to sentiment analysis, but this approach is mainly applied to English texts. To overcome these limitations, this study applies the Word2Vec algorithm which is an extension of the neural network algorithms to deal with more extensive semantic features that were underestimated in existing sentiment analysis. The result from adopting the Word2Vec algorithm is compared to the result from co-occurrence analysis to identify the difference between two approaches. The results show that the distribution related word extracted by Word2Vec algorithm in that the words represent some emotion about the keyword used are three times more than extracted by co-occurrence analysis. The reason of the difference between two results comes from Word2Vec's semantic features vectorization. Therefore, it is possible to say that Word2Vec algorithm is able to catch the hidden related words which have not been found in traditional analysis. In addition, Part Of Speech (POS) tagging for Korean is used to detect adjective as "emotional word" in Korean. In addition, the emotion words extracted from the text are converted into word vector by the Word2Vec algorithm to find related words. Among these related words, noun words are selected because each word of them would have causal relationship with "emotional word" in the sentence. The process of extracting these trigger factor of emotional word is named "Emotion Trigger" in this study. As a case study, the datasets used in the study are collected by searching using three keywords: professor, prosecutor, and doctor in that these keywords contain rich public emotion and opinion. Advanced data collecting was conducted to select secondary keywords for data gathering. The secondary keywords for each keyword used to gather the data to be used in actual analysis are followed: Professor (sexual assault, misappropriation of research money, recruitment irregularities, polifessor), Doctor (Shin hae-chul sky hospital, drinking and plastic surgery, rebate) Prosecutor (lewd behavior, sponsor). The size of the text data is about to 100,000(Professor: 25720, Doctor: 35110, Prosecutor: 43225) and the data are gathered from news, blog, and twitter to reflect various level of public emotion into text data analysis. As a visualization method, Gephi (http://gephi.github.io) was used and every program used in text processing and analysis are java coding. The contributions of this study are as follows: First, different approaches for sentiment analysis are integrated to overcome the limitations of existing approaches. Secondly, finding Emotion Trigger can detect the hidden connections to public emotion which existing method cannot detect. Finally, the approach used in this study could be generalized regardless of types of text data. The limitation of this study is that it is hard to say the word extracted by Emotion Trigger processing has significantly causal relationship with emotional word in a sentence. The future study will be conducted to clarify the causal relationship between emotional words and the words extracted by Emotion Trigger by comparing with the relationships manually tagged. Furthermore, the text data used in Emotion Trigger are twitter, so the data have a number of distinct features which we did not deal with in this study. These features will be considered in further study.

Automatic Construction of Alternative Word Candidates to Improve Patent Information Search Quality (특허 정보 검색 품질 향상을 위한 대체어 후보 자동 생성 방법)

  • Baik, Jong-Bum;Kim, Seong-Min;Lee, Soo-Won
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.10
    • /
    • pp.861-873
    • /
    • 2009
  • There are many reasons that fail to get appropriate information in information retrieval. Allomorph is one of the reasons for search failure due to keyword mismatch. This research proposes a method to construct alternative word candidates automatically in order to minimize search failure due to keyword mismatch. Assuming that two words have similar meaning if they have similar co-occurrence words, the proposed method uses the concept of concentration, association word set, cosine similarity between association word sets and a filtering technique using confidence. Performance of the proposed method is evaluated using a manually extracted alternative list. Evaluation results show that the proposed method outperforms the context window overlapping in precision and recall.

Extracting Alternative Word Candidates for Patent Information Search (특허 정보 검색을 위한 대체어 후보 추출 방법)

  • Baik, Jong-Bum;Kim, Seong-Min;Lee, Soo-Won
    • Journal of KIISE:Computing Practices and Letters
    • /
    • v.15 no.4
    • /
    • pp.299-303
    • /
    • 2009
  • Patent information search is used for checking existence of earlier works. In patent information search, there are many reasons that fails to get appropriate information. This research proposes a method extracting alternative word candidates in order to minimize search failure due to keyword mismatch. Assuming that two words have similar meaning if they have similar co-occurrence words, the proposed method uses the concept of concentration, association word set, cosine similarity between association word sets and a ranking modification technique. Performance of the proposed method is evaluated using a manually extracted alternative word candidate list. Evaluation results show that the proposed method outperforms the document vector space model in recall.

Descriptor Profiling for Research Domain Analysis (연구영역분석을 위한 디스크립터 프로파일링에 관한 연구)

  • Kim, Pan-Jun;Lee, Jae-Yun
    • Journal of the Korean Society for information Management
    • /
    • v.24 no.4
    • /
    • pp.285-303
    • /
    • 2007
  • This study aims to explore a new technique making complementary linkage between controlled vocabularies and uncontrolled vocabularies for analyzing a research domain. Co-word analysis can be largely divided into two based on the types of vocabulary used: controlled and uncontrolled. In the case of using controlled vocabulary, data sparseness and indexer effect are inherent drawbacks. On the other case, word selection by the author's perspective and word ambiguity. To complement each other, we suggest a descriptor profiling that represents descriptors(controlled vocabulary) as the co-occurrence with words from the text(uncontrolled vocabulary). Applying the profiling to the domain of information science implies that this method can complement each other by reducing the inherent shortcoming of the controlled and uncontrolled vocabulary.

Web Site Keyword Selection Method by Considering Semantic Similarity Based on Word2Vec (Word2Vec 기반의 의미적 유사도를 고려한 웹사이트 키워드 선택 기법)

  • Lee, Donghun;Kim, Kwanho
    • The Journal of Society for e-Business Studies
    • /
    • v.23 no.2
    • /
    • pp.83-96
    • /
    • 2018
  • Extracting keywords representing documents is very important because it can be used for automated services such as document search, classification, recommendation system as well as quickly transmitting document information. However, when extracting keywords based on the frequency of words appearing in a web site documents and graph algorithms based on the co-occurrence of words, the problem of containing various words that are not related to the topic potentially in the web page structure, There is a difficulty in extracting the semantic keyword due to the limit of the performance of the Korean tokenizer. In this paper, we propose a method to select candidate keywords based on semantic similarity, and solve the problem that semantic keyword can not be extracted and the accuracy of Korean tokenizer analysis is poor. Finally, we use the technique of extracting final semantic keywords through filtering process to remove inconsistent keywords. Experimental results through real web pages of small business show that the performance of the proposed method is improved by 34.52% over the statistical similarity based keyword selection technique. Therefore, it is confirmed that the performance of extracting keywords from documents is improved by considering semantic similarity between words and removing inconsistent keywords.

Noun Sense Disambiguation Based-on Corpus and Conceptual Information (말뭉치와 개념정보를 이용한 명사 중의성 해소 방법)

  • 이휘봉;허남원;문경희;이종혁
    • Korean Journal of Cognitive Science
    • /
    • v.10 no.2
    • /
    • pp.1-10
    • /
    • 1999
  • This paper proposes a noun sense disambiguation method based-on corpus and conceptual information. Previous research has restricted the use of linguistic knowledge to the lexical level. Since knowledge extracted from corpus is stored in words themselves, the methods requires a large amount of space for the knowledge with low recall rate. On the contrary, we resolve noun sense ambiguity by using concept co-occurrence information extracted from an automatically sense-tagged corpus. In one experimental evaluation it achieved, on average, a precision of 82.4%, which is an improvement of the baseline by 14.6%. considering that the test corpus is completely irrelevant to the learning corpus, this is a promising result.

  • PDF

A Social Network Analysis of Research Topics in Korean Nursing Science (한국 간호학 연구주제의 사회 연결망 분석)

  • Lee, Soo-Kyoung;Jeong, Senator;Kim, Hong-Gee;Yom, Young-Hee
    • Journal of Korean Academy of Nursing
    • /
    • v.41 no.5
    • /
    • pp.623-632
    • /
    • 2011
  • Purpose: This study was done to explore the knowledge structure of Korean Nursing Science. Methods: The main variables were key words from the research papers that were presented in the Journal of Korean Academy of Nursing and journals of the seven branches of the Korean Academy of Nursing. English titles and abstracts of the papers (n=5,936) published from 1995 through 2009 were included. Noun phrases were extracted from the corpora using an in-house program (BiKE Text Analyzer), and their co-occurrence networks were generated via a cosine similarity measure, and then the networks were analyzed and visualized using Pajek, a Social Network Analysis program. Results: With the hub and authority measures, the most important research topics in Korean Nursing Science were identified. Newly emerging topics by three-year period units were observed as research trends. Conclusion: This study provides a systematic overview on the knowledge structure of Korean Nursing Science. The Social Network Analysis for this study will be useful for identifying the knowledge structure in Nursing Science.

Design of WWW IR System Based on Keyword Clustering Architecture (색인어 말뭉치 처리를 기반으로 한 웹 정보검색 시스템의 설계)

  • 송점동;이정현;최준혁
    • The Journal of Information Technology
    • /
    • v.1 no.1
    • /
    • pp.13-26
    • /
    • 1998
  • In general Information retrieval systems, improper keywords are often extracted and different search results are offered comparing to user's aim bacause the systems use only term frequency informations for selecting keywords and don't consider their meanings. It represents that improving precision is limited without considering semantics of keywords because recall ratio and precision have inverse proportion relation. In this paper, a system which is able to improve precision without decreasing recall ratio is designed and implemented, as client user module is introduced which can send feedbacks to server with user's intention. For this purpose, keywords are selected using relative term frequency and inverse document frequency and co-occurrence words are extracted from original documents. Then, the keywords are clustered by their semantics using calculated mutual informations. In this paper, the system can reject inappropriate documents using segmented semantic informations according to feedbacks from client user module. Consequently precision of the system is improved without decreasing recall ratio.

  • PDF

Research Trends of Studies Related to the Nature of Science in Korea Using Semantic Network Analysis (언어 네트워크 분석을 이용한 과학의 본성에 관한 국내연구 동향)

  • Lee, Sang-Gyun
    • Journal of the Korean Society of Earth Science Education
    • /
    • v.9 no.1
    • /
    • pp.65-87
    • /
    • 2016
  • The purpose of this study is to examine Korean journals related to science education in order to analyze research trends into Nature of science in Korea. The subject of the study is the level of Korean Citation Index (KCI-listed, KCI listing candidates), that can be searched by the key phrase, "Nature of science" in Korean language through the RISS service. In this study, the Descriptive Statistical Analysis Method is utilized to discover the number of research articles, classifying them by year and by journal. Also, the Sementic Network Analysis was conducted to Word Cloud Analysis the frequency of key words, Centrality Analysis, co-occurrence and Cluster Dendrogram Analysis throughout a variety of research articles. The results show that 91 research papers were published in 25 journals from 1991 to 2015. Specifically, the 2 major journals published more than 50% of the total papers. In relation to research fields., In addition, key phrases, such as 'Analysis', 'recognition', 'lessons', 'science textbook', 'History of Science' and 'influence' are the most frequently used among the research studies. Finally, there are small language networks that appear concurrently as below: [Nature of science - high school student - recognize], [Explicit - lesson - effect], [elementary school - science textbook - analysis]. Research topic have been gradually diversified. However, many studies still put their focus on analysis and research aspects, and there have been little research on the Teaching and learning methods.