• Title/Summary/Keyword: co-occurrence words

Search Result 74, Processing Time 0.03 seconds

Research Trend Analysis on Customer Satisfaction in Service Field Using BERTopic and LDA

  • YANG, Woo-Ryeong;YANG, Hoe-Chang
    • The Journal of Economics, Marketing and Management
    • /
    • v.10 no.6
    • /
    • pp.27-37
    • /
    • 2022
  • Purpose: The purpose of this study is to derive various ways to realize customer satisfaction for the development of the service industry by exploring research trends related to customer satisfaction, which is presented as an important goal in the service industry. Research design, data and methodology: To this end, 1,456 papers with English abstracts using scienceON were used for analysis. Using Python 3.7, word frequency and co-occurrence analysis were confirmed, and topics related to research trends were classified through BERTopic and LDA. Results: As a result of word frequency and co-occurrence frequency analysis, words such as quality, intention, and loyalty appeared frequently. As a result of BERTopic and LDA, 11 topics such as 'catering service' and 'brand justice' were derived. As a result of trend analysis, it was confirmed that 'brand justice' and 'internet shopping' are emerging as relatively important research topics, but CRM is less interested. Conclusions: The results of this study showed that the 7P marketing strategy is working to some extent. Therefore, it is proposed to conduct research related to acquisition of good customers through service price, customer lifetime value application, and customer segmentation that are expected to be needed for the development of the service industry.

A Content Analysis of Journal Articles Using the Language Network Analysis Methods (언어 네트워크 분석 방법을 활용한 학술논문의 내용분석)

  • Lee, Soo-Sang
    • Journal of the Korean Society for information Management
    • /
    • v.31 no.4
    • /
    • pp.49-68
    • /
    • 2014
  • The purpose of this study is to perform content analysis of research articles using the language network analysis method in Korea and catch the basic point of the language network analysis method. Six analytical categories are used for content analysis: types of language text, methods of keyword selection, methods of forming co-occurrence relation, methods of constructing network, network analytic tools and indexes. From the results of content analysis, this study found out various features as follows. The major types of language text are research articles and interview texts. The keywords were selected from words which are extracted from text content. To form co-occurrence relation between keywords, there use the co-occurrence count. The constructed networks are multiple-type networks rather than single-type ones. The network analytic tools such as NetMiner, UCINET/NetDraw, NodeXL, Pajek are used. The major analytic indexes are including density, centralities, sub-networks, etc. These features can be used to form the basis of the language network analysis method.

Alleviating Semantic Term Mismatches in Korean Information Retrieval (한국어 정보 검색에서 의미적 용어 불일치 완화 방안)

  • Yun, Bo-Hyun;Park, Sung-Jin;Kang, Hyun-Kyu
    • The Transactions of the Korea Information Processing Society
    • /
    • v.7 no.12
    • /
    • pp.3874-3884
    • /
    • 2000
  • An information retrieval system has to retrieve all and only documents which are relevant to a user query, even if index terms and query terms are not matched exactly. However, term mismatches between index terms and qucry terms have been a serious obstacle to the enhancement of retrieval performance. In this paper, we discuss automatic term normalization between words in text corpora and their application to a Korean information retrieval system. We perform two types of term normalizations to alleviate semantic term mismatches: equivalence class and co-occurrence cluster. First, transliterations, spelling errors, and synonyms are normalized into equivalence classes bv using contextual similarity. Second, context-based terms are normalized by using a combination of mutual information and word context to establish word similarities. Next, unsupervised clustering is done by using K-means algorithm and co-occurrence clusters are identified. In this paper, these normalized term products are used in the query expansion to alleviate semantic tem1 mismatches. In other words, we utilize two kinds of tcrm normalizations, equivalence class and co-occurrence cluster, to expand user's queries with new tcrms, in an attempt to make user's queries more comprehensive (adding transliterations) or more specific (adding spc'Cializationsl. For query expansion, we employ two complementary methods: term suggestion and term relevance feedback. The experimental results show that our proposed system can alleviatl' semantic term mismatches and can also provide the appropriate similarity measurements. As a result, we know that our system can improve the rctrieval efficiency of the information retrieval system.

  • PDF

Unsupervised Noun Sense Disambiguation using Local Context and Co-occurrence (국소 문맥과 공기 정보를 이용한 비교사 학습 방식의 명사 의미 중의성 해소)

  • Lee, Seung-Woo;Lee, Geun-Bae
    • Journal of KIISE:Software and Applications
    • /
    • v.27 no.7
    • /
    • pp.769-783
    • /
    • 2000
  • In this paper, in order to disambiguate Korean noun word sense, we define a local context and explain how to extract it from a raw corpus. Following the intuition that two different nouns are likely to have similar meanings if they occur in the same local context, we use, as a clue, the word that occurs in the same local context where the target noun occurs. This method increases the usability of extracted knowledge and makes it possible to disambiguate the sense of infrequent words. And we can overcome the data sparseness problem by extending the verbs in a local context. The sense of a target noun is decided by the maximum similarity to the clues learned previously. The similarity between two words is computed by their concept distance in the sense hierarchy borrowed from WordNet. By reducing the multiplicity of clues gradually in the process of computing maximum similarity, we can speed up for next time calculation. When a target noun has more than two local contexts, we assign a weight according to the type of each local context to implement the differences according to the strength of semantic restriction of local contexts. As another knowledge source, we get a co-occurrence information from dictionary definitions and example sentences about the target noun. This is used to support local contexts and helps to select the most appropriate sense of the target noun. Through experiments using the proposed method, we discovered that the applicability of local contexts is very high and the co-occurrence information can supplement the local context for the precision. In spite of the high multiplicity of the target nouns used in our experiments, we can achieve higher performance (89.8%) than the supervised methods which use a sense-tagged corpus.

  • PDF

A Korean Homonym Disambiguation System Based on Statistical, Model Using weights

  • Kim, Jun-Su;Lee, Wang-Woo;Kim, Chang-Hwan;Ock, Cheol-young
    • Proceedings of the Korean Society for Language and Information Conference
    • /
    • 2002.02a
    • /
    • pp.166-176
    • /
    • 2002
  • A homonym could be disambiguated by another words in the context as nouns, predicates used with the homonym. This paper using semantic information (co-occurrence data) obtained from definitions of part of speech (POS) tagged UMRD-S$^1$), In this research, we have analyzed the result of an experiment on a homonym disambiguation system based on statistical model, to which Bayes'theorem is applied, and suggested a model established of the weight of sense rate and the weight of distance to the adjacent words to improve the accuracy. The result of applying the homonym disambiguation system using semantic information to disambiguating homonyms appearing on the dictionary definition sentences showed average accuracy of 98.32% with regard to the most frequent 200 homonyms. We selected 49 (31 substantives and 18 predicates) out of the 200 homonyms that were used in the experiment, and performed an experiment on 50,703 sentences extracted from Sejong Project tagged corpus (i.e. a corpus of morphologically analyzed words) of 3.5 million words that includes one of the 49 homonyms. The result of experimenting by assigning the weight of sense rate(prior probability) and the weight of distance concerning the 5 words at the front/behind the homonym to be disambiguated showed better accuracy than disambiguation systems based on existing statistical models by 2.93%,

  • PDF

Representation of ambiguous word in Latent Semantic Analysis (LSA모형에서 다의어 의미의 표상)

  • 이태헌;김청택
    • Korean Journal of Cognitive Science
    • /
    • v.15 no.2
    • /
    • pp.23-31
    • /
    • 2004
  • Latent Semantic Analysis (LSA Landauer & Dumais, 1997) is a technique to represent the meanings of words using co-occurrence information of words appearing in he same context, which is usually a sentence or a document. In LSA, a word is represented as a point in multidimensional space where each axis represents a context, and a word's meaning is determined by its frequency in each context. The space is reduced by singular value decomposition (SVD). The present study elaborates upon LSA for use of representation of ambiguous words. The proposed LSA applies rotation of axes in the document space which makes possible to interpret the meaning of un. A simulation study was conducted to illustrate the performance of LSA in representation of ambiguous words. In the simulation, first, the texts which contain an ambiguous word were extracted and LSA with rotation was performed. By comparing loading matrix, we categorized the texts according to meanings. The first meaning of an ambiguous wold was represented by LSA with the matrix excluding the vectors for the other meaning. The other meanings were also represented in the same way. The simulation showed that this way of representation of an ambiguous word can identify the meanings of the word. This result suggest that LSA with axis rotation can be applied to representation of ambiguous words. We discussed that the use of rotation makes it possible to represent multiple meanings of ambiguous words, and this technique can be applied in the area of web searching.

  • PDF

Analysis of Articles Related STEAM Education using Network Text Analysis Method (네트워크 텍스트 분석법을 활용한 STEAM 교육의 연구 논문 분석)

  • Kim, Bang-Hee;Kim, Jinsoo
    • Journal of Korean Elementary Science Education
    • /
    • v.33 no.4
    • /
    • pp.674-682
    • /
    • 2014
  • This study aims to analyze STEAM-related articles and to look into the trend of research to present implications for research directions in the future. To achieve the research purpose, the researcher searched by key words, 'STEAM' and 'Convergence Education' through the RISS. Subjects of analysis were titles of 181 articles in journal articles and conference papers published from 2011 through 2013. Through an analysis of the frequency of the texts that appeared in the titles of the papers, key words were selected, the co-occurrence matrix of the key words was established, and using network maps, degree centrality and betweenness centrality, and structural equivalence, a network text analysis was carried out. For the analysis, KrKwic, KrTitle, UCINET and NetMiner Program were used, and the results were as follows: in the result of the text frequency analysis, the key words appeared in order of 'program', 'development', 'base' and 'application'. Through the network among the texts, a network built up with core hubs such as 'program', 'development', 'elementary' and 'application' was found, and in the degree centrality analysis, 'program', 'elementary', 'development' and 'science' comprised key issues at a relatively high value, which constituted the pivot of the network. As a result of the structural equivalence analysis, regarding the types of their respective relations, it was analyzed that there was a similarity in four clusters such as the development of a program (1), analysis of effects (2) and the establishment of a theoretical base (1).

Applying Randomization Tests to Collocation Analyses in Large Corpora (언어의 공기관계 분석을 위한 임의화검증의 응용)

  • Yang Kyung-Sook;Kim HeeYoung
    • The Korean Journal of Applied Statistics
    • /
    • v.18 no.3
    • /
    • pp.583-595
    • /
    • 2005
  • Contingency tables are used to compare counts of n-grams to determine if the n-gram is a true collocation, meaning that the words that make up the n-gram are highly associated in the text. Some statistical methods for identifying collocation are used. They are Kulczinsky coefficient, Ochiai coefficient, Frager and McGowan coefficient, Yule coefficient, mutual information, and chi-square, and so on. But the main problem is that these measures are based ell the assumption of a nor-mal or approximately normal distribution of the variables being sampled. While this assumption is valid in most instances, it is not valid when comparing the rates of occurrence of rare events, and texts are composed mostly of rare events. In this paper we have simply reviewed some statistics about testing association of two words. Some randomization tests to evaluate the significance level in analyzing collocation in large corpora are proposed. A related graph can be used to compare different lest statistics that ran be used to analyze the same contingency table.

A Semantic Representation Based-on Term Co-occurrence Network and Graph Kernel

  • Noh, Tae-Gil;Park, Seong-Bae;Lee, Sang-Jo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.11 no.4
    • /
    • pp.238-246
    • /
    • 2011
  • This paper proposes a new semantic representation and its associated similarity measure. The representation expresses textual context observed in a context of a certain term as a network where nodes are terms and edges are the number of cooccurrences between connected terms. To compare terms represented in networks, a graph kernel is adopted as a similarity measure. The proposed representation has two notable merits compared with previous semantic representations. First, it can process polysemous words in a better way than a vector representation. A network of a polysemous term is regarded as a combination of sub-networks that represent senses and the appropriate sub-network is identified by context before compared by the kernel. Second, the representation permits not only words but also senses or contexts to be represented directly from corresponding set of terms. The validity of the representation and its similarity measure is evaluated with two tasks: synonym test and unsupervised word sense disambiguation. The method performed well and could compete with the state-of-the-art unsupervised methods.

Analysis of News Agenda Using Text mining and Semantic Network Analysis: Focused on COVID-19 Emotions (텍스트 마이닝과 의미 네트워크 분석을 활용한 뉴스 의제 분석: 코로나 19 관련 감정을 중심으로)

  • Yoo, So-yeon;Lim, Gyoo-gun
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.47-64
    • /
    • 2021
  • The global spread of COVID-19 around the world has not only affected many parts of our daily life but also has a huge impact on many areas, including the economy and society. As the number of confirmed cases and deaths increases, medical staff and the public are said to be experiencing psychological problems such as anxiety, depression, and stress. The collective tragedy that accompanies the epidemic raises fear and anxiety, which is known to cause enormous disruptions to the behavior and psychological well-being of many. Long-term negative emotions can reduce people's immunity and destroy their physical balance, so it is essential to understand the psychological state of COVID-19. This study suggests a method of monitoring medial news reflecting current days which requires striving not only for physical but also for psychological quarantine in the prolonged COVID-19 situation. Moreover, it is presented how an easier method of analyzing social media networks applies to those cases. The aim of this study is to assist health policymakers in fast and complex decision-making processes. News plays a major role in setting the policy agenda. Among various major media, news headlines are considered important in the field of communication science as a summary of the core content that the media wants to convey to the audiences who read it. News data used in this study was easily collected using "Bigkinds" that is created by integrating big data technology. With the collected news data, keywords were classified through text mining, and the relationship between words was visualized through semantic network analysis between keywords. Using the KrKwic program, a Korean semantic network analysis tool, text mining was performed and the frequency of words was calculated to easily identify keywords. The frequency of words appearing in keywords of articles related to COVID-19 emotions was checked and visualized in word cloud 'China', 'anxiety', 'situation', 'mind', 'social', and 'health' appeared high in relation to the emotions of COVID-19. In addition, UCINET, a specialized social network analysis program, was used to analyze connection centrality and cluster analysis, and a method of visualizing a graph using Net Draw was performed. As a result of analyzing the connection centrality between each data, it was found that the most central keywords in the keyword-centric network were 'psychology', 'COVID-19', 'blue', and 'anxiety'. The network of frequency of co-occurrence among the keywords appearing in the headlines of the news was visualized as a graph. The thickness of the line on the graph is proportional to the frequency of co-occurrence, and if the frequency of two words appearing at the same time is high, it is indicated by a thick line. It can be seen that the 'COVID-blue' pair is displayed in the boldest, and the 'COVID-emotion' and 'COVID-anxiety' pairs are displayed with a relatively thick line. 'Blue' related to COVID-19 is a word that means depression, and it was confirmed that COVID-19 and depression are keywords that should be of interest now. The research methodology used in this study has the convenience of being able to quickly measure social phenomena and changes while reducing costs. In this study, by analyzing news headlines, we were able to identify people's feelings and perceptions on issues related to COVID-19 depression, and identify the main agendas to be analyzed by deriving important keywords. By presenting and visualizing the subject and important keywords related to the COVID-19 emotion at a time, medical policy managers will be able to be provided a variety of perspectives when identifying and researching the regarding phenomenon. It is expected that it can help to use it as basic data for support, treatment and service development for psychological quarantine issues related to COVID-19.