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Abstract

This paper proposes a new semantic representation and its associated similarity measure. The representation expresses
textual context observed in a context of a certain term as a network where nodes are terms and edges are the number of co-
occurrences between connected terms. To compare terms represented in networks, a graph kernel is adopted as a similarity
measure. The proposed representation has two notable merits compared with previous semantic representations. First, it
can process polysemous words in a better way than a vector representation. A network of a polysemous term is regarded
as a combination of sub-networks that represent senses and the appropriate sub-network is identified by context before
compared by the kernel. Second, the representation permits not only words but also senses or contexts to be represented
directly from corresponding set of terms. The validity of the representation and its similarity measure is evaluated with
two tasks: synonym test and unsupervised word sense disambiguation. The method performed well and could compete
with the state-of-the-art unsupervised methods.
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1. Introduction

Semantic representation is important for computers to
handle various natural language processing tasks. For ex-
ample, Information Retrieval (IR) is a task that retrieves
documents that are semantically related to queries. Ma-
chine Translation is also a task that needs to find seman-
tically equivalent translation. Other tasks like document
classifications, or summarizations all uses some sort of se-
mantic representation directly or indirectly. Thus, various
work has been done on the topic of semantic representa-
tions. Existing semantic representations can be generally
classified into one of three groups [1]: semantic network,
spatial representation, and topic model.

Semantic networks represent the meaning of words by
networks where nodes are words and edges are relation-
ships among them. While sophisticated semantic networks
like WordNet are valuable in many tasks, the cost of build-
ing such resources is high. In addition, they are often not
available for minor languages.

Spatial representations, including vector-space model of
classical IR and LSA-like rank reduced representations,
are very popular and widely used. In spatial representa-
tions, documents or terms are expressed as vectors: vectors
in a term-document space, or in a latent semantic space.
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One problem of the spatial representations is polysemous
words. Spatial representations generally cannot capture
polysemy directly, because they represent each word as a
single point in the space.

The third group of semantic representation is topic
model. In topic models [2, 3], the meaning of a term (or
a document) is represented as a probability mixture of la-
tent topics. Since a word is represented as a mixture of
topics instead of a superposition of vectors, a polysemous
word can be resolved more profoundly within the model.
However, the fact that topic models can handle some pol-
ysemous words does not mean that the topic models can
capture wordsenses. They can resolve ambiguous words
only that have been captured at the right resolution of top-
ics. The number of topics is generally several hundreds.
Meanwhile, a typical sense inventory has several thousands
or more senses. If a given sense is finer than the topic res-
olution, the sense cannot be captured by the topic model.

The representation of this paper is an attempt to cope
with these issues of existing semantic representations. The
proposed representation is a type of spatial representation.
However, it does not directly represent a term as a point
in space. Instead, it regards a structure obtained from co-
occurrence data as a semantic representation of a term.
Since co-occurrence data naturally form a network, the co-
occurrence network is used as the structure to represent a
term. An R-convolution kernel is then introduced to com-
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pare two structures to calculate the similarity between rep-
resentations in an infinitely high dimensional space.

The representation and its associated similarity measure
can process polysemous words in a profound way. Unlike
vectors, a network is not a single point. In the proposed
representation, a polysemous term is regarded as a combi-
nation of sub-networks where each sub-network represents
different senses. Therefore, it is possible to identify an ap-
propriate sub-network that is activated by context, and this
sub-network can be used to resolve the polysemous term.
Additionally, the representation permits not only words but
also senses to be represented directly as networks origi-
nated from corresponding synsets. A specific sense can
be generated by combining common sub-structures among
words in a synonym set (synset) that represents the sense.
Since synsets are a widely accepted way to represent word
senses, this can be a practical way to represent word senses
from statistical co-occurrence data. Another advantage of
the approach is that it does not need sophisticated resources
like WordNet relations. It only needs a large unlabeled text
collection as LSA or topic models do.

2. Related Works

Good semantic representations can greatly enhance per-
formance of natural language processing tasks. Landauer
et al. [4] showed that term-document vectors often fail to
solve tasks related with semantics like synonym test, and
proposed the well-known Latent Semantic Analysis (LSA).
LSA reduces the dimension of vectors, and compares terms
and documents in the reduced latent space. In effect, the re-
duced space can reflect higher order co-occurrences.

Reducing dimensionality is not the only way to reflect
higher order co-occurrences. Second-order or higher or-
der co-occurrences can be directly calculated [5] or can be
obtained by random walks on WordNet-like ontology net-
works [6] or by replacing latent space of LSA to explicit
topics of Wikipedia entries [7]. Those variations have re-
ported equal or better result than the original LSA. How-
ever, they can be still regarded as spatial models where a
term is represented as a point.

Topic models [3, 2] are statistical models that assumes a
text is a probability mixture of hidden topics. While topic
models capture the polysemous use of words, they do not
carry the explicit notion of senses. To capture senses, topic
models need some additional resources or models. For ex-
ample, Boyd-Graber et al. [8] proposed a generative model
that combines a topic model with a WordNet walk model.

Recently, several graph-based approaches have been ap-
plied to word sense induction (WSI) tasks [9, 10]. Typi-
cally, network-based WSI methods cluster nodes and edges
of a co-occurrence network, where each cluster is then cor-
responding to one induced sense. To distinguish the sense

of a polysemous word, terms observed in the context of the
polysemous word are compared with the terms observed in
each cluster.

One important difference between previous network-
based WSI methods and the proposed approach is that how
the co-occurrence network is used. In network-based WSI
methods, resulting clusters are converted to some other rep-
resentation (weighted tree, weighted vector, etc) to be com-
pared with the terms of context. In general, they do not treat
a network itself as a representation, and their networks can-
not be directly compared, and they cannot be used to solve
semantic relatedness task like synonym tests. Also, since
they are a sense induction method, they need some addi-
tional mapping step to map the induced senses (clusters)
to predefined senses if they are to be employed in WSD
setup. This is a common problem of sense disambiguation
methods based-on clustering methods [11].

Another related previous work are methods that use ran-
dom walks on WordNet to calculate semantic relatedness
[12]. They calculate the semantic relatedness between two
terms by calculating probability of ending up in the same
node in the WordNet network by long random walks. This
calculation method is similar to the famous PageRank al-
gorithm, but the goal of this calculation is measuring relat-
edness, not ranking.

While such methods are related to the approach of this
paper, there are some deep differences: First, the proposed
representation of this paper is based on networks from an
unlabeled corpus, not from sophisticated lexical database
like WordNet. Moreover, in this work, a network corre-
sponding to a specific term is regarded as a semantic rep-
resentation which can possibly replace a vector represen-
tation. Thus, not only a similarity measure, but also net-
work operations like finding sub-structures or combining
two networks are considered and implemented in this work.

In our own previous work, a graph kernel space has
been used to enhance disambiguation problems like lexical
translations [13]. Compared to our previous work, the pro-
posed method of this paper is more general, and not limited
to lexical translations. Here, the co-occurrence network is
regarded as a basic representation, which can replace gen-
eral vector based representations. This paper shows that
network representations can be used in more general NLP
tasks like synonym detection. The goal of this paper is
not to compete with a specific state-of-the-art (although the
experiments shows a result comparable to the state-of-the-
arts), but to compare the performance of the two represen-
tations: namely, the vector representation and the network
representation.

3. Basic Idea of the Network Representation

Co-occurrences of words can be understood as a net-
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(a) grin

(b) joke

(c) smile

Figure 1: Three Networks of term “grin”, “joke” and
“smile”.

work. In the network, a node represents a term, and an edge
between two nodes is made when the terms of the nodes
co-occur. A term can be expressed as a fragment of the co-
occurrence network where the term is the central node. For
example, Figure 1 shows an actual co-occurrence network
observed from BNC corpus. For clarity, only a very small
number of nodes and edges are shown in the figure, and
weight values on the edges are omitted.

The basic assumption of the proposed approach is that
if two terms were semantically similar, their corresponding
network parts would be similar. In the figure, the network
similarity of “grin” and “smile” will be higher than that of
“grin” and “joke”. Common edges and common cliques
are found between two networks of “grin” and “smile”, but
they are absent between those of “grin” and “joke”.

Polysemous words have more than one sense. In this
work, a network corresponding to a polysemy is regarded
as an aggregation of several sub-networks. Figure 2 shows
a network whose center is the term “disc”. The left side of
this network is a part in which the sense of “disc” is phono-
graph or music album. The right part of the network repre-
sents a sub-network as a magnetic disc or memory device
used in computers.

The second assumption of this paper is that the correct

Figure 2: The network of term “disc”.

(a) disc-LSO

(b) disc-Microsoft

Figure 3: Two expanded networks of “disc”.

sense of a polysemous term can be found by expanding the
network with words occurred in the context of the term.
For example, consider following two sentences;

• “Previn and the LSO on the front of any disc was . . . ”

• “Microsoft will replace your disc, if it’s within . . . ”

Figure 3 shows two expanded networks of the term “disc”.
Figure 3-(a) is the network of “disc” expanded by “LSO”
which is observed in the context of the first sentence. Fig-
ure 3-(b) is expanded by term “Microsoft”. The network of
“disc” has no prevailing sense, but in the expanded graph,
a particular sense is prevailing. The network of “phono-
graph” will be more similar to that of “disc, LSO” than
that of “disc, Microsoft”. On the other hand, the network
of “computer” will be more similar to that of “disc, Mi-
crosoft”.

Networks for senses can be built in a similar fash-
ion. Figure 4 outlines the idea. In English WordNet, the
sense of disc as sound/music recording is defined with
a synset: {disc, disk, phonograph, recording, record}.
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Figure 4: Finding common parts from a synset.

A network which corresponds to the synset can be built
by finding shared network sub-structures. In the fig-
ure, sub-networks shared betweendisc–phonograph, disc–
recording and disc–recordhave been unified (the grey
area). This unified part is also a network, and it can be
used as the network representation for the sense.

By representing senses in this way, senses and the poly-
semous term with its context are now both represented in
the same form of networks. Thus, it is possible to compare
them directly with a kernel function for networks.

4. Building Network Representation from
Corpus

4.1 Building Co-occurrence Network

LetTx = {x, t1, . . . , tm} be terms observed around term
x from the corpus. Instead of converting the observation
into a vector ofm + 1 elements, it is possible to build a
network withm + 1 nodes. Let a matrixSx be an adja-
cency matrix of a network. The matrixSx is a square ma-
trix where both columns and rows represent nodes, and its
element[S]ij represents the weight of an edge from nodei
to nodej. That is,

[Sx]ij = count(ti, tj),

wherecount(ti, tj) returns the number of times that the
termsti andtj are observed together in contexts. All nodes
have an edge connected tox, the center node, but they also
have other edges. For example, if two termsti andtj have
co-occurred in the context ofx, there is an edge between
nodeti and nodetj . The network expressed by matrixSx

is then regarded as a unit representation for the termx. The
size of the context (context window) is a parameter of the
network building.

A unit network that represents a single term can be ex-
tended to express a set like a synset or a set of context
terms. To do so, two additional operations are needed. One
is a union operation for networks, and the other is an inter-
section operation.

Let A and B be adjacency matrices. UAB =
terms(A) ∪ terms(B) is a set of terms that appear either
in A or B, where a functionterms(X) returns all terms
in the adjacency matrixX. Similarly, IAB = terms(A) ∩
terms(B) is a set of terms that appears both inA andB.
Let A′ be an adjacency matrix expanded fromA with UAB .
In A′, the rows and columns which do not appear inA but
B are filled with 0. Then, the union of two networksA and
B is defined as simple sum of two expanded matrices.

SA ∪ SB = A′ + B′.

Similarly, the intersection of two networks is defined as

SA ∩ SB = A′′ + B′′,

whereA′′ is an adjacency matrix reduced fromA with IAB .
ForA′′, the rows and columns which do not appear in both
A andB are removed fromA.

4.2 Network Operations for Context and
Synset

A unit network of a term only holds terms that co-
occurred directly with the term. Thus, every node in a
unit network is just one walk away from the center term
(distance-1 network). Network union can be used to ex-
pand a unit network with its co-occurring terms to reflect
higher order co-occurrences. For example, in the network
of term “data”, top five nodes in terms of node degree are:
{“computer”, “available”, “system”, “information”, “col-
lection”}. A second-order network (distance-2 network)
with expansion parameterα (number of expanding nodes,
which is 5 in this case) can be built by using union opera-
tions: Scomputer ∪ Savailable ∪ Ssystem ∪ Sinformation ∪
Scollection.

For tasks related to resolving polysemous words, it is
important to find an appropriate sub-network. Network
intersection operation can be applied to find a common-
substructure that is activated by context terms. For ex-
ample, if the term “disc” appears in the sentence like “A
550 watt motor provides the power behind the 11,000rpm
disc.”, the goal is to find sub-networks of “disc” that is
activated by terms “motor”, “power” and “watt”. To ex-
tract the activated sub-network, network intersections and
unions should be applied as(Sdisc ∩ Smotor) ∪ (Sdisc ∩
Spower) ∪ (Sdisc ∩ Swatt). In effect, this operation returns
the shared network that is spanning between the polyse-
mous term and its context terms. Networks corresponding
to senses are also built similarly from synsets.

5. Graph Kernel as Network Similarity
Measure
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Haussler first defined a principle way of making ker-
nels on structured objects, so called R-convolution kernel
[14]. Graph kernels are R-convolution kernels on graphs,
and define the similarity between graphs by their common
sub-structures. The most commonly used kernel for net-
works is the random-walk graph kernel which uses com-
mon random-walks between two graphs as sub-structures.
Random walk kernel counts the number of matched ran-
dom walks where matches between nodes and edges are
determined by comparing their labeled values.

The kernel value of two graphsG1 andG2 is the sum
of the sub-kernels for all pairs of walks within these two
graphs.

kgraph(G1, G2) =∑

walk1∈G1

∑

walk2∈G2

kwalk(walk1, walk2), (1)

wherekwalk is a sub-kernel to compute the similarity be-
tween two random walks. kwalk is also a product of
all similarities between nodes and edges along the walks.
Let knode(v, w) return the similarity between two nodes
(terms) and an edge kernelkedge return the similarity be-
tween two co-occurrence counts. Then,kwalk is written
as

kwalk(walk1, walk2) =
n−1∏

i=1

λkstep((vi, vi+1), (wi, wi+1)), (2)

where

kstep((vi, vi+1), (wi, wi+1)) = knode(vi, wi) ·
knode(vi+1, wi+1) · kedge((vi, vi+1), (wi, wi+1))

andλ is a decay parameter that is used to guarantee the
convergence.

In this paper, node labels (terms) are compared by a delta
kernel. That is,

knode(x, x′) =
{

1 if label(x) = label(x′),
0 otherwise

wherelabel(x) is the label of the nodex. Edge values are
compared via a Brownian bridge kernel. That is,

kedge(y, y′) = max(0, 1− |wgt(y)− wgt(y′)|),

where wgt(y) returns the labeled value of the edgey.
The function returns normalized value of edge counts by
Jaccard-coefficients.

Gartner et al. [15] proposed an elegant solution for cal-
culating random walk graph kernel based on matrix oper-
ations. Random walks generally include cycles that visits
same nodes more than once. Noh et al. [13] proposed an
acyclic random walk kernel calculation for special cases

Table 1: Experimental results of synonym test
Wnd. Network Vector
Size N,V,ADJ N,ADJ N,V,ADJ N,ADJ

4 57.50% 65.00% 55.00% 62.50%
6 55.00% 68.75% 50.00% 63.75%
8 50.00% 63.75% 45.00% 58.75%

Sent. 46.25% 65.00% 45.00% 45.00%

where all node labels are unique. The co-occurrence net-
work satisfies this property, and the kernel calculation is
adopted in this paper.

6. Experiments

6.1 Setup

Co-occurrence data for experiments have been collected
from BNC-XML corpus. To build a unit network for each
term, all sentences that have the term are collected from the
corpus. Each sentence is then part-of-speech (POS) tagged
with a POS tagger [16], and stop words are removed from
the resulting tagged sequence. Finally the network building
process described in Section 4.1 is applied to preparing unit
networks.

6.2 Synonym Test

Synonym test is a task of selecting synonyms from can-
didates without any context. For example, a question word
grin is given with a set of candidates,{exercise, rest, joke,
smile}. The task is to select one synonym from the can-
didates. TOEFL synonym test set of [4] is used for the
experiment.

In the proposed representation, the synonym task is to
select the most similar network. LetGt be a network that
represent the question termt andGci be that of a synonym
candidateci whereci ∈ C, the set of candidates. Then, the
most probable synonymc∗ is determined by

c∗ = arg max
ci∈C

kgraph(Gt, Gci)√
kgraph(Gt, Gt)kgraph(Gci , Gci)

.

The synonym test was done in two steps. First the syn-
onym task was performed only with unit networks. Then,
the expanded networks are used to represent both question
and candidate terms to see the difference.

Table 1 shows the result of the first step with baseline
method of vectors with cosine similarity. The rows of the
table show the window size for the context. Window size 4
means that only 4 words in the left and right to the center
term are treated as context. The columns of the table show
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Table 2: Synonym test with distance-2 networks.

α
Exp. Exp. noun Exp. noun &

all qst. qst. only adj. qst.
2 56.25% 67.50% 72.50%
3 55.00% 70.00% 73.75%
4 52.50% 68.70% 73.75%

POS classes used for building networks and vectors. Values
in the table are accuracy in percentage.

Two POS space is used in the experiment: A space of
nouns (N), adjectives (A) and verbs (V), and a space of
nouns and adjectives. The limited POS space of nouns and
adjectives performs better for both vectors and networks.
Another point to note is the effect of window size. For vec-
tors, reduced window size significantly improves the result
of synonym test, and this concurs with [17].

However, for networks, the effect of window size is
not that significant. The network and its kernel consis-
tently outperform vector and its cosine similarity under the
same conditions. The best performance of the network was
achieved with networks of nouns and adjective and window
size 6. Networks of all experiments below have been built
with this setup.

The second step of synonym test is designed to test the
effect of higher-order co-occurrences. Both the question
word and their candidate words are expanded to distance-2
networks as described in Section 4.2. The resulting net-
works now have second order co-occurrences.

Table 2 shows the accuracy of synonym finding accord-
ing to α, the number of nodes to be expanded. The test
set has nouns, adjectives, verbs and adverbs as the ques-
tion words. Expanding all questions does not yield good
results. When expanding all questions withα = 4, the
accuracy was dropped from 68.75% to 56.25%. Some
previous work [5] suggests that including higher-order co-
occurrences usually improves accuracy from 10% to 15%.
However, for the proposed representation with test setup,
accuracy of verb and adverb questions actually degrades
with distance-2 network. On the contrary, noun questions
and adjective questions yield improved results with higher-
order co-occurrences. The best result for synonym test is
73.75% withα = 3 where noun and adjective questions are
compared with distance-2 networks and all other questions
were compared with unit networks.

Original LSA paper [4] achieved 64% of accuracy in the
test with a smaller corpus. ACL wiki lists results of vari-
ous systems with the same test set. The best score known
for the test set is as high as 97.5% [18] and many achieved
better than the proposed representation’s 73.75%. How-
ever, the systems with high accuracy are mostly supervised
systems that need either a manually tagged corpus or a lan-
guage resource like WordNet.

6.3 Word Sense Disambiguation

For Word Sense Disambiguation, Senseval-3 English
lexical sample (S3LS) test set is used as a test set. Al-
though there are more recent test sets for WSD, Senseval-3
is the most widely tested and reported. Senseval-3 English
lexical sample test set has 3944 tests for 57 polysemous
terms including nouns, adjectives and verbs. For this exper-
iment, only noun disambiguation tests have been selected
and tested. There are twenty nouns with total 1807 tests.

To resolve the sense of a polysemous term, both the
context of the polysemous term and the candidate senses
should be expressed as networks. The network for contexts
are built by collecting five nouns and adjectives from the
context of the polysemous word. Then, the unit network
of the polysemous term and context terms are combined by
intersections and unions as described in Section 4.2. Net-
works corresponding to senses are also built similarly from
terms in the synsets.

One problem of making networks from synsets is the ex-
istence of empty synsets. Senseval-3 uses WordNet senses
as its sense inventory, and many senses have empty synsets
and only have glosses. For example, the sense for “paper”
as “research paper” has an empty synset and a gloss: “a
scholarly article describing the results of observations or
stating hypotheses; ‘he has written many scientific papers’
”.

For such a sense, a pseudo-synset has been manually
prepared to have at least four nouns and adjectives from
the gloss or siblings. For example, a set for the sense is
manually filled with{paper, scholarly, article, hypotheses,
scientific}. This is the only manual intervention in the ex-
periments. No training data or sense frequencies has been
used.

After the senses and contexts have been prepared, their
similarity is compared to select the most likely sense of the
term in the context. The selection is done in the same fash-
ion with the synonym test experiment. The only difference
is that now the context network is used as the question, and
the networks of senses are now treated as the candidates.
Thus, the polysemous word with its context is classified
into the most similar sense in terms of its network similar-
ity.

Table 3 shows the result against a baseline method and
other systems reported with the same data (S3LS nouns) in
the literature. Values in the table is recall, but it is accuracy
at the same time, since the coverage is 100% in all cases.
“Proposed” shows the sense disambiguation result of the
proposed representation. “MFS” is a baseline method that
always selects the most frequent sense. “Vector-based” is
another baseline method that uses the same setup and cor-
pus with the proposed method, but it uses the vector rep-
resentation and the cosine similarity measure. “S3LS best
supervised” is the highest scoring system in the S3LS task
[19]. Its performance is recall value filtered for nouns as
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Table 3: Sense disambiguation result on nouns of Senseval-
3 lexical samples.

Methods Recall
Proposed 61.9

Vector-based 57.6
MFS 55.0

S3LS best supervised 72.9
kNN-all 70.6

kNN-BoW 63.5
HyperLex-m 59.9

HyperLex-m-opt. 64.6
Cymfony 57.9

Prob0 54.2

reported in [20]. “kNN-all” and “kNN-BoW” are the re-
sults of a supervised WSD method [21]. “kNN-all” uses all
features including local and topical features while “kNN-
BoW” uses only the lexical features.

HyperLex is an unsupervised WSI method based on
co-occurrence network [9]. Its output is mapped to
S3LS senses by S3LS training data [20]. “HyperLex-m”’
implies the performance with default parameters, while
“HyperLex-m-opt” is its performance with the parameters
optimized by S2LS (Senseval-2 LS) data. “Cymfony” is an
unsupervised WSD method that uses a Maximum Entropy
model for clustering contexts [22]. It uses some percent-
age (10%) of S3LS training data to map clusters to senses.
“Prob0” is another unsupervised WSD module based on
POS and frequency information [23].

The proposed approach outperforms baseline method of
MFS more than 6 points. Also, it outperforms an equivalent
vector based method than 4 points, and marginally outper-
forms “HyperLex-m”. Among listed unsupervised meth-
ods, only the optimized HyperLex outperforms the pro-
posed approach. Network-based WSI methods are gener-
ally sensitive to various parameters. For example, the per-
formance of HyperLex on S3LS varies nearly 5 points be-
tween default version and optimized version. In the above
case, “Hyperlex-m-opt” needed S2LS test data and its an-
swers for the optimization. On the contrary, the proposed
approach performed without any training data, sense fre-
quency nor mapping data. The result shows that the pro-
posed approach is comparable to the state-of-the-art unsu-
pervised sense disambiguation methods.

7. Conclusions

A semantic representation and an associated similarity
measure have been proposed in this paper. In the proposed
approach, term co-occurrences observed around a certain
term are recorded as a network, and it is regarded as a
semantic representation for the term. A graph kernel is

adopted to calculate similarity between two networks.
The validity of the representation and its associated sim-

ilarity measure was tested with two experiments: synonym
test and unsupervised sense disambiguation. The proposed
representation generally outperforms a vector representa-
tion in the synonym test. In the second experiment, it was
shown that the proposed representation and its similarity
measure can resolve senses comparable to state-of-the-art
unsupervised methods.

The proposed representation is similar to network-based
WSI methods in that both uses co-occurrence networks to
resolve senses. However, the proposed representation is
more flexible since it uses a network itself as a represen-
tation and computes similarity between two networks di-
rectly in a high dimensional space. Thus, it can be directly
used in other tasks like calculation of semantic relatedness.

The proposed representation can be used as a replace-
ment for vectors, since the representation is a spatial repre-
sentation and its associated kernel is an inner-product func-
tion. In this work, two real-world unsupervised setups have
been used to show that the network representation outper-
forms the equivalent vector method representation. How-
ever, the general usefulness of the proposed representation
in other setups like a supervised setup is yet to be explored,
and is a major future work.
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