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Abstract

This paper proposes a new semantic representation and its associated similarity measure. The representation expresses
textual context observed in a context of a certain term as a network where nodes are terms and edges are the number of co-
occurrences between connected terms. To compare terms represented in networks, a graph kernel is adopted as a similarity
measure. The proposed representation has two notable merits compared with previous semantic representations. First, it
can process polysemous words in a better way than a vector representation. A network of a polysemous term is regarded
as a combination of sub-networks that represent senses and the appropriate sub-network is identified by context before
compared by the kernel. Second, the representation permits not only words but also senses or contexts to be represented
directly from corresponding set of terms. The validity of the representation and its similarity measure is evaluated with
two tasks: synonym test and unsupervised word sense disambiguation. The method performed well and could compete
with the state-of-the-art unsupervised methods.
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1. Introduction . o
One problem of the spatial representations is polysemous

words. Spatial representations generally cannot capture
olysemy directly, because they represent each word as a
Ingle point in the space.

Semantic representation is important for computers
handle various natural language processing tasks. For
ample, Information Retrieval (IR) is a task that retrieves
documents that are semantically related to queries. Ma- The third group of semantic representation is topic
chine Translation is also a task that needs to find semafpodel. In topic models [2, 3], the meaning of a term (or
tically equivalent translation. Other tasks like documen@ document) is represented as a probability mixture of la-
classifications, or summarizations all uses some sort of s@nt topics. Since a word is represented as a mixture of
mantic representation directly or indirectly. Thus, variouopics instead of a superposition of vectors, a polysemous
work has been done on the topic of semantic representgord can be resolved more profoundly within the model.
tions. Existing semantic representations can be generalfipwever, the fact that topic models can handle some pol-
classified into one of three groups [1]: semantic network/semous words does not mean that the topic models can
spatial representation, and topic model. capture wordsenses They can resolve ambiguous words

Semantic networks represent the meaning of words tgnly that have been captured at the right resolution of top-
networks where nodes are words and edges are relatids. The number of topics is generally several hundreds.
ships among them. While sophisticated semantic network4eanwhile, a typical sense inventory has several thousands
like WordNet are valuable in many tasks, the cost of buildor more senses. If a given sense is finer than the topic res-
ing such resources is high. In addition, they are often néfution, the sense cannot be captured by the topic model.

available for minor languages. The representation of this paper is an attempt to cope
Spatial representations, including vector-space model gfith these issues of existing semantic representations. The
classical IR and LSA-like rank reduced representationgroposed representation is a type of spatial representation.
are very popular and widely used. In spatial representgtowever, it does not directly represent a term as a point
tions, documents or terms are expressed as vectors: vectpfspace. Instead, it regards a structure obtained from co-
in a term-document space, or in a latent semantic spaGgcurrence data as a semantic representation of a term.
*Corresponding Author Since co-occurrence data naturally form a network, the co-
Manuseript reseived Aug. 23, 2011 revised Nov. 3, 2011 accepte %ccurrence network is used as the structure to represent a
Nov. 4, 2011. erm. An R-convolution kernel is then introduced to com-
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pare two structures to calculate the similarity between remf a polysemous word, terms observed in the context of the
resentations in an infinitely high dimensional space. polysemous word are compared with the terms observed in

The representation and its associated similarity measu¢@ch cluster.
can process polysemous words in a profound way. Unlike One important difference between previous network-
vectors, a network is not a single point. In the proposebased WSI methods and the proposed approach is that how
representation, a polysemous term is regarded as a comihie co-occurrence network is used. In network-based WSI
nation of sub-networks where each sub-network represemtgthods, resulting clusters are converted to some other rep-
different senses. Therefore, it is possible to identify an apesentation (weighted tree, weighted vector, etc) to be com-
propriate sub-network that is activated by context, and thigared with the terms of context. In general, they do not treat
sub-network can be used to resolve the polysemous termnetwork itself as a representation, and their networks can-
Additionally, the representation permits not only words bunot be directly compared, and they cannot be used to solve
also senses to be represented directly as networks origemantic relatedness task like synonym tests. Also, since
nated from corresponding synsets. A specific sense clrey are a sense induction method, they need some addi-
be generated by combining common sub-structures amotignal mapping step to map the induced senses (clusters)
words in a synonym sesynse} that represents the senseto predefined senses if they are to be employed in WSD
Since synsets are a widely accepted way to represent waeltup. This is a common problem of sense disambiguation
senses, this can be a practical way to represent word senseathods based-on clustering methods [11].
from statistical co-occurrence data. Another advantage of Another related previous work are methods that use ran-
the approach is that it does not need sophisticated resouregsn walks on WordNet to calculate semantic relatedness
like WordNet relations. It only needs a large unlabeled texti 2]. They calculate the semantic relatedness between two
collection as LSA or topic models do. terms by calculating probability of ending up in the same

node in the WordNet network by long random walks. This
calculation method is similar to the famous PageRank al-

2. Related Works gorithm, but the goal of this calculation is measuring relat-
edness, not ranking.

Good semantic representations can greatly enhance perWhile such methods are related to the approach of this
formance of natural language processing tasks. Landaysaper, there are some deep differences: First, the proposed
et al. [4] showed that term-document vectors often fail teepresentation of this paper is based on networks from an
solve tasks related with semantics like synonym test, andhlabeled corpus, not from sophisticated lexical database
proposed the well-known Latent Semantic Analysis (LSA)like WordNet. Moreover, in this work, a network corre-
LSA reduces the dimension of vectors, and compares terrsponding to a specific term is regarded as a semantic rep-
and documents in the reduced latent space. In effect, the resentation which can possibly replace a vector represen-
duced space can reflect higher order co-occurrences.  tation. Thus, not only a similarity measure, but also net-

Reducing dimensionality is not the only way to reflectvork operations like finding sub-structures or combining
higher order co-occurrences. Second-order or higher diwo networks are considered and implemented in this work.
der co-occurrences can be directly calculated [5] or can beln our own previous work, a graph kernel space has
obtained by random walks on WordNet-like ontology netbeen used to enhance disambiguation problems like lexical
works [6] or by replacing latent space of LSA to explicittranslations [13]. Compared to our previous work, the pro-
topics of Wikipedia entries [7]. Those variations have reposed method of this paper is more general, and not limited
ported equal or better result than the original LSA. Howto lexical translations. Here, the co-occurrence network is
ever, they can be still regarded as spatial models whereegarded as a basic representation, which can replace gen-
term is represented as a point. eral vector based representations. This paper shows that

Topic models [3, 2] are statistical models that assumesigtwork representations can be used in more general NLP
text is a probability mixture of hidden topics. While topictasks like synonym detection. The goal of this paper is
models capture the p0|ysemous use of words, they do n@@t to compete with a SDECiﬁC state-of-the-art (although the
carry the explicit notion of senses. To capture senses, togigPeriments shows a result comparable to the state-of-the-
models need some additional resources or models. For é{ts), but to compare the performance of the two represen-
ample, Boyd-Graber et al. [8] proposed a generative modkations: namely, the vector representation and the network
that combines a topic model with a WordNet walk model. Fepresentation.

Recently, several graph-based approaches have been ap-

plied to word sense induction (WSI) tasks [9, 10]. Typi- Basic | fthe Network Repr ntati
cally, network-based WSI methods cluster nodes and edge:')’s' asic ldea of the Netwo epresentation
of a co-occurrence network, where each cluster is then cor-

responding to one induced sense. To distinguish the senseCo-occurrences of words can be understood as a net-
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between two nodes is made when the terms of the nodes

co-occur. A term can be expressed as a fragment of the co-

occurrence network where the term is the central node. Feense of a polysemous term can be found by expanding the
example, Figure 1 shows an actual co-occurrence netwonletwork with words occurred in the context of the term.
observed from BNC corpus. For clarity, only a very smalFor example, consider following two sentences;

number of nodes and edges are shown in the figure, and
weight values on the edges are omitted.

The basic assumption of the proposed approach is that,
if two terms were semantically similar, their corresponding
network parts would be similar. In the figure, the networkFigure 3 shows two expanded networks of the term “disc”.
similarity of “grin” and “smile” will be higher than that of Figure 3-(a) is the network of “disc” expanded by “LSO”
“grin” and “joke”. Common edges and common cliquesyhich is observed in the context of the first sentence. Fig-
are found between two networks of “grin” and “smile”, buture 3-(b) is expanded by term “Microsoft”. The network of
they are absent between those of “grin” and “joke”. “disc” has no prevailing sense, but in the expanded graph,

Polysemous words have more than one sense. In thasparticular sense is prevailing. The network of “phono-
work, a network corresponding to a polysemy is regardegraph” will be more similar to that of “disc, LSO” than
as an aggregation of several sub-networks. Figure 2 showst of “disc, Microsoft”. On the other hand, the network
a network whose center is the term “disc”. The left side obf “computer” will be more similar to that of “disc, Mi-
this network is a part in which the sense of “disc” is phonoerosoft”.
graph or music album. The right part of the network repre- Networks for senses can be built in a similar fash-
sents a sub-network as a magnetic disc or memory devi@m. Figure 4 outlines the idea. In English WordNet, the
used in computers. sense of disc as sound/music recording is defined with

The second assumption of this paper is that the correat synset: {disc, disk, phonograph, recording, recgrd

e “Previn and the LSO on the front of any discwas ...”

“Microsoft will replace your disc, if it's within .. .”
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Let A and B be adjacency matrices. Usp =
terms(A) U terms(B) is a set of terms that appear either
in A or B, where a functiorterms(X) returns all terms
in the adjacency matriX. Similarly, 45 = terms(A) N
terms(B) is a set of terms that appears bothdrand B.
Let A’ be an adjacency matrix expanded framvith U 5.

In A’, the rows and columns which do not appea#ditut
B are filled with 0. Then, the union of two networksand
B is defined as simple sum of two expanded matrices.

[
| B *
b |

L ]
}neco_rd_ihgﬂ récord
(B ——

Figure 4: Finding common parts from a synset. SAUSp=A'+B.

A network which corresponds to the synset can be bui§imilarly, the intersection of two networks is defined as

by finding shared network sub-structures. In the fig- _an "
ure, sub-networks shared betwebsc—phonographdisc— SanSp = A"+ B

recording and disc—recordhave been unified (the grey whereA” is an adjacency matrix reduced frofrwith 7,4 .

area). This unified part is also a network, and it can bgorAu, the rows and columns which do not appear in both
used as the network representation for the sense. A andB are removed fromi.

By representing senses in this way, senses and the poly-
semous term with its context are now both represented in ]
the same form of networks. Thus, it is possible to comparé.2 Network Operations for Context and
them directly with a kernel function for networks. Synset

A unit network of a term only holds terms that co-

4. Building Network Representation from occurred directly with the term. Thus, every node in a
Corpus unit network is just one walk away from the center term

(distance-1 network). Network union can be used to ex-

pand a unit network with its co-occurring terms to reflect

higher order co-occurrences. For example, in the network

4.1 Building Co-occurrence Network of term “data”, top five nodes in terms of node degree are:
{“computer”, “available”, “system”, “information”, “col-
LetT, = {=,t1,...,tm} be terms observed around terMiection”}. A second-order network (distance-2 network)

x from the corpus. Instead of converting the observatiopity expansion parameter (number of expanding nodes,

Into a vector ofm + 1 elements, it is possible to build a \yhich is 5 in this case) can be built by using union opera-
netWOfk Wlthm + 1 nOdeS' Leta matrl)sr be an ad'la- tionS: Scomputer U Savailable U Ssyste’rn U Sinfor’mation U

cency matrix of a network. The matri; is a squarema- ¢ . .~
trix where both columns and rows represent nodes, and ItSg g, tasks related to resolving polysemous words, it is

elementS],; represents the weight of an edge from node jortant to find an appropriate sub-network. Network
to nodej. Thatis, intersection operation can be applied to find a common-
substructure that is activated by context terms. For ex-
ample, if the term “disc” appears in the sentence like “A
where count(t;, t;) returns the number of times that theS50 watt motor provides the power behind the 11,000rpm
termst; andt; are observed together in contexts. All nodedlisc.”, the goal is to find sub-networks of “disc” that is
have an edge connecteditothe center node, but they alsoactivated by terms “motor”, “power” and “watt”. To ex-
have other edges. For example, if two termandt,; have tract the activated sub-network, network intersections and
co-occurred in the context of, there is an edge betweenunions should be applied &Suisc N Smotor) U (Saise N
nodet; and node/;. The network expressed by matisy ~ Spower) U (Saise N Swart). In effect, this operation returns

is then regarded as a unit representation for the terfine ~ the shared network that is spanning between the polyse-
size of the context (context window) is a parameter of thEous term and its context terms. Networks corresponding
network building. to senses are also built similarly from synsets.

A unit network that represents a single term can be ex-
tended to express a set like a synset or a set of context T
terms. Todo go, two additional op)érations are needed. One 5. Graph Kernel as Network Similarity
is a union operation for networks, and the other is an inter- Measure
section operation.

[Sz];;

ij = count(ti, tj),
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Haussler first defined a principle way of making ker- ) .
nels on structured objects, so called R-convolution kernel Table 1: Experimental results of synonym test
[14]. Graph kernels are R-convolution kernels on graphs, Wpd. Network Vector
and define the similarity between graphs by their common Size  n.vap) N.ADJ NVADJ ___ NADJ
sub-structures. The most commonly used kernel for net- 4 57.50% 65.00% 55.00% 62.50%
works is the random-walk graph kernel which uses com- 6 5.00% 68.75% 50.00% 63.75%
mon random-walks between two graphs as sub-structures. 8 0.00% 63.75% 45.00% 58.75%
Random walk kernel counts the number of matched ran- Sent. 46.25% 65.00% 45.00% 45.00%
dom walks where matches between nodes and edges are

determined by comparing their labeled values. .
: where all node labels are unique. The co-occurrence net-
The kernel value of two graph§; andGs is the sum - - o
work satisfies this property, and the kernel calculation is

of the sub-kernels for all pairs of walks within these two s
adopted in this paper.

graphs.
kgraph,(Gly GZ) =

Yo Y kwan(walki,walks), (1)

walk1€G1 walks€Go

6. Experiments

wherek,,qi1 is a sub-kernel to compute the similarity be-

) 6.1 Setup
tween two random walks. k., is also a product of
all similarities between nodes and edges along the walks. Co-occurrence data for experiments have been collected
Let Epnoqe(v, w) return the similarity between two nodesfrom BNC-XML corpus. To build a unit network for each
(terms) and an edge kernely,. return the similarity be- term, all sentences that have the term are collected from the
tween two co-occurrence counts. Thén,,; iS written  corpus. Each sentence is then part-of-speech (POS) tagged

as with a POS tagger [16], and stop words are removed from
the resulting tagged sequence. Finally the network building
Ewaik(walky, walky) = process described in Section 4.1 is applied to preparing unit
n-t networks.
H )\kstep((viv Ui+1); (wi, wi+1))7 (2)
=1
6.2 Synonym Test
where
Synonym test is a task of selecting synonyms from can-
Estep((viy vig1), (i, wiv1)) = Enode(vi, w;) - didates without any context. For example, a question word
Enode(Vit1, Wit1) * Kedge (Vi, vig1), (Wis wit1)) grin is given with a set of candidategexercise, rest, joke,

_ _ smile}. The task is to select one synonym from the can-
and ) is a decay parameter that is used to guarantee t@@dates. TOEFL synonym test set of [4] is used for the

convergence. experiment.
In this paper, node labels (terms) are compared by a deltain the proposed representation, the synonym task is to
kernel. That is, select the most similar network. Lé&t; be a network that

represent the question termnandG., be that of a synonym
candidate:;; wherec; € C, the set of candidates. Then, the

most probable synonyi is determined by
wherelabel(z) is the label of the node. Edge values are

compared via a Brownian bridge kernel. That is, c* = arg max Fgrapn(Gi, Ge,) :
c,eC \/kgraph(Gh Gt)kgraph(Gci; Gci)

n | 1 if label(z) = label(z’),
Fnoae (@, 2") = { 0 otherwise

kedge(y,y') = max(0, 1 — wgt(y) — wgt(y)]),
’ The synonym test was done in two steps. First the syn-

where wgt(y) returns the labeled value of the edge onym task was performed only with unit networks. Then,
The function returns normalized value of edge counts bihe expanded networks are used to represent both question
Jaccard-coefficients. and candidate terms to see the difference.

Gartner et al. [15] proposed an elegant solution for cal- Table 1 shows the result of the first step with baseline
culating random walk graph kernel based on matrix opemethod of vectors with cosine similarity. The rows of the
ations. Random walks generally include cycles that visitsable show the window size for the context. Window size 4
same nodes more than once. Noh et al. [13] proposed areans that only 4 words in the left and right to the center
acyclic random walk kernel calculation for special caseterm are treated as context. The columns of the table show
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. .3 Wor nse Disambi ion
Table 2: Synonym test with distance-2 networks. 6.3 ord Sense Disambiguatio

o EXp. EXp.noun Exp.noun& For Word Sense Disambiguation, Senseval-3 English
allgst.  gst. only adj. gst. lexical sample (S3LS) test set is used as a test set. Al-
2 56.25%  67.50% 72.50% though there are more recent test sets for WSD, Senseval-3
3 55.00%  70.00% 73.75% is the most widely tested and reported. Senseval-3 English
4 5250% 68.70% 73.75% lexical sample test set has 3944 tests for 57 polysemous

terms including nouns, adjectives and verbs. For this exper-
iment, only noun disambiguation tests have been selected

POS classes used for building networks and vectors. Valuggd tested. There are twenty nouns with total 1807 tests.
in the table are accuracy in percentage. To resolve the sense of a polysemous term, both the

Two POS space is used in the experiment: A space §PMEXt of the polysemous term and the candidate senses
nouns (N), adjectives (A) and verbs (V), and a space ghould be expressed as networks. The network for contexts
nouns and adjectives. The limited POS space of nouns afitf Puilt by collecting five nouns and adjectives from the

adjectives performs better for both vectors and network§ONtext of the polysemous word. Then, the unit network
Another point to note is the effect of window size. For vec®! the polysemous term and context terms are combined by
ptersections and unions as described in Section 4.2. Net-

tors, reduced window size significantly improves the resul , e
of synonym test, and this concurs with [17]. works corresponding to senses are also built similarly from

. .. termsin the synsets.
However, for networks, the effect of window size is . .
One problem of making networks from synsets is the ex-

not that significant. The network and its kernel consise e of empty synsets. Senseval-3 uses WordNet senses

tently outperform vector and its cosine similarity under the_ . .
as its sense inventory, and many senses have empty synsets

same conditions. The best performance of the network was p R
and only have glosses. For example, the sense for “paper

achieved with networks of nouns and adjective and window.

size 6. Networks of all experiments below have been buiﬁlS research. baper h.as.’ an empty synset and a gloss. a
with this setup. scholarly article describing the results of observations or

stating hypotheses; ‘he has written many scientific papers’
The second step of synonym test is designed to test the
effect of higher-order co-occurrences. Both the question gq sch a sense, a pseudo-synset has been manually
word and their candidate words are expanded to distance;ganared to have at least four nouns and adjectives from
networks as described in Section 4.2. The resulting negre gloss or siblings. For example, a set for the sense is
works now have second order co-occurrences. manually filled with{paper, scholarly, article, hypotheses,
Table 2 shows the accuracy of synonym finding accordscientifig. This is the only manual intervention in the ex-
ing to a, the number of nodes to be expanded. The tegleriments. No training data or sense frequencies has been
set has nouns, adjectives, verbs and adverbs as the quesed.
tion words. Expanding all questions does not yield good After the senses and contexts have been prepared, their
results. When expanding all questions with= 4, the  similarity is compared to select the most likely sense of the
accuracy was dropped from 68.75% to 56.25%. Somg@rm in the context. The selection is done in the same fash-
previous work [5] suggests that including higher-order copn with the synonym test experiment. The only difference
occurrences usually improves accuracy from 10% to 15%s that now the context network is used as the question, and
However, for the proposed representation with test setughe networks of senses are now treated as the candidates.
accuracy of verb and adverb questions actually degradggus, the polysemous word with its context is classified
with distance-2 network. On the contrary, noun questiongto the most similar sense in terms of its network similar-
and adjective questions yield improved results with highejty,
order co-occurrences. The best result for synonym test iSTaple 3 shows the result against a baseline method and
73.75% witha = 3 where noun and adjective questions argyther systems reported with the same data (S3LS nouns) in
compared with distance-2 networks and all other questioRge |iterature. Values in the table is recall, but it is accuracy
were compared with unit networks. at the same time, since the coverage is 100% in all cases.
Original LSA paper [4] achieved 64% of accuracy in thé'Proposed” shows the sense disambiguation result of the
test with a smaller corpus. ACL wiki lists results of vari- proposed representation. “MFS” is a baseline method that
ous systems with the same test set. The best score knomlvays selects the most frequent sense. “Vector-based” is
for the test set is as high as 97.5% [18] and many achievedhother baseline method that uses the same setup and cor-
better than the proposed representation’s 73.75%. Howwus with the proposed method, but it uses the vector rep-
ever, the systems with high accuracy are mostly supervisegisentation and the cosine similarity measure. “S3LS best
systems that need either a manually tagged corpus or a laupervised” is the highest scoring system in the S3LS task
guage resource like WordNet. [19]. Its performance is recall value filtered for nouns as
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Table 3- S di biquati it fS aijopted to calculate similarity between two networks.
aple o sense disambiguation result on nouns of Senseval-ry, validity of the representation and its associated sim-

3 lexical samples. ilarity measure was tested with two experiments: synonym

Methods Recall test and unsupervised sense disambiguation. The proposed
Proposed 61.9 representation generally outperforms a vector representa-
Vector-based o7.6 tion in the synonym test. In the second experiment, it was
MFS i 5.0 shown that the proposed representation and its similarity
S3LS best supervised  72.9 measure can resolve senses comparable to state-of-the-art
KNN-all 70.6 unsupervised methods.
kNN-BoW 63.5 The proposed representation is similar to network-based
HyperLex-m 9.9 WSI methods in that both uses co-occurrence networks to
HyperLex-m-opt. 64.6 resolve senses. However, the proposed representation is
Cymfony 57.9 more flexible since it uses a network itself as a represen-
Prob0 54.2

tation and computes similarity between two networks di-
rectly in a high dimensional space. Thus, it can be directly
used in other tasks like calculation of semantic relatedness.
The proposed representation can be used as a replace-
) ) _ : ment for vectors, since the representation is a spatial repre-
features including local and topical features whilkN-  santation and its associated kernel is an inner-product func-
BoW” uses only the lexical features. tion. In this work, two real-world unsupervised setups have
HyperLex is an unsupervised WSI method based Opeen used to show that the network representation outper-
co-occurrence network [9].  Its output is mapped t@orms the equivalent vector method representation. How-
S3LS senses by S3LS training data [20]. “HyperLex-m"ever, the general usefulness of the proposed representation

implies the performance with default parameters, whilg, other setups like a supervised setup is yet to be explored,
“HyperLex-m-opt” is its performance with the parametersyng is a major future work.

optimized by S2LS (Senseval-2 LS) data. “Cymfony” is an
unsupervised WS_D method that uses a Maximum Entro%cknowledgements
model for clustering contexts [22]. It uses some percent-
age (10%) of S3LS training data to map clusters to senses.This work was supported in part by the Industrial Strate-
“Prob0” is another unsupervised WSD module based agic Technology Development Program (10035348, Devel-
POS and frequency information [23]. opment of a Cognitive Planning and Learning Model for
The proposed approach outperforms baseline method Miobile Platforms) funded by the Ministry of Knowledge
MFS more than 6 points. Also, it outperforms an equivalerEconomy (MKE, Korea).
vector based method than 4 points, and marginally outper-
forms “HyperLex-m”. Among listed unsupervised meth-
ods, only the optimized HyperLex outperforms the pro-
posed approach. Network-based WSI methods are gener-
ally sensitive to various parameters. For example, the per-: - —_—
formance of HyperLex on S3LS varies nearly 5 points be-[l] T G”ﬁ'ths.’ M. Steyvers, .and J. Tenenpaum, Top|cs
tween default version and optimized version. In the above in semantic representationPsychological Review
case, “Hyperlex-m-opt” needed S2LS test data and its an- vol. 114, no. 2, pp. 211244, 2007.
swers for the optimization. On the contrary, the proposed?2] D. Blei, A. Ng, and M. Jordan, “Latent dirichlet allo-
approach performed without any training data, sense fre-  cation,” The Journal of Machine Learning Reseayrch
guency nor mapping data. The result shows that the pro-  vol. 3, pp. 993-1022, 2003.

posed approach is comparable to the state-of-the-art unsmfé] M. Rosen-zvi. T. Griffiths, M. Steyvers, and

ervised sense disambiguation methods.
P g P. Smyth, “The author-topic model for authors and
documents,” inProceedings of the 20th Conference
on Uncertainty in Artificial Intelligencepp. 487-494,
2004.

reported in [20]. kNN-all” and “4NN-BoW” are the re-
sults of a supervised WSD method [21kNN-all” uses all
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