• 제목/요약/키워드: co-evolutionary algorithm

검색결과 54건 처리시간 0.023초

기생적 공진화 알고리즘을 이용한 퍼지 제어기 설계 (Design of Fuzzy Controller Using Parasitic Co-evolutionary Algorithm)

  • 심귀보;변광섭
    • 제어로봇시스템학회논문지
    • /
    • 제10권11호
    • /
    • pp.1071-1076
    • /
    • 2004
  • It is a fuzzy controller that it is the most used method in the control of non-linear system. The most important part in the fuzzy controller is a design of fuzzy rules. Many algorithm that design fuzzy rules have proposed. And attention to the evolutionary computation is increasing in the recent days. Among them, the co-evolutionary algorithm is used in the design of optimal fuzzy rule. This paper takes advantage of a schema co-evolutionary algorithm. In order to verify the efficiency of the schema co-evolutionary algorithm, a fuzzy controller for the mobile robot control is designed by the schema co-evolutionary algorithm and it is compared with other parasitic co-evolutionary algorithm such as a virus-evolutionary genetic algorithm and a co-evolutionary method of Handa.

Schema Co-Evolutionary Algorithm을 이용한 2-Layer Fuzzy Controller의 최적 설계 (Optimal Design of the 2-Layer Fuzzy Controller using the Schema Co-Evolutionary Algorithm)

  • 심귀보;변광섭
    • 한국지능시스템학회논문지
    • /
    • 제14권2호
    • /
    • pp.228-233
    • /
    • 2004
  • 최근 들어, 다양하고 복잡한 기능을 갖는 로봇이 요구되고 있다. 그러나 이전의 알고리즘으로는 그러한 요구를 만족시킬 수 없다. 이러한 문제를 해결하기 위해, 본 논문에서는 다양한 입력과 출력을 다루는 경우에도 작은 개수의 퍼지 룰을 갖고, 효율적이고 강인하게 제어할 수 있는 2-Layer Fuzzy Controller를 소개한다. 그런데 퍼지 제어기에서의 중요한 문제점은 퍼지 룰 베이스를 어떻게 설계하는지에 달려 있다. 본 논문은 Schema Co-Evolutionary Algorithm을 이용하여 최적의 2-Layer Fuzzy Controller를 설계하는데, 이 Schema Co-Evolutionary Algorithm은 simple GA보다 더 빠르고 우수하게 최적해를 찾을 수 있다.

Co-Evolutionary Algorithm and Extended Schema Theorem

  • Sim, Kwee-Bo;Jun, Hyo-Byung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제2권1호
    • /
    • pp.95-110
    • /
    • 1998
  • Evolutionary Algorithms (EAs) are population-based optimization methods based on the principle of Darwinian natural selection. The representative methodology in EAs is genetic algorithm (GA) proposed by J. H. Holland, and the theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. In the meaning of these foundational concepts, simple genetic algorithm (SGA) allocate more trials to the schemata whose average fitness remains above average. Although SGA does well in many applications as an optimization method, still it does not guarantee the convergence of a global optimum in GA-hard problems and deceptive problems. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve in contrast with traditional single population evolutionary algorithm. In this paper we show why the co-evolutionary algorithm works better than SGA in terms of an extended schema theorem. And predator-prey co-evolution and symbiotic co-evolution, typical approaching methods to co-evolution, are reviewed, and dynamic fitness landscape associated with co-evolution is explained. And the experimental results show a co-evolutionary algorithm works well in optimization problems even though in deceptive functions.

  • PDF

Optimal Design of a 2-Layer Fuzzy Controller using the Schema Co-Evolutionary Algorithm

  • Park Chang-Hyun;Sim Kwee-Bo
    • International Journal of Control, Automation, and Systems
    • /
    • 제3권3호
    • /
    • pp.403-410
    • /
    • 2005
  • Nowadays, versatile robots are developed around the world. Novel algorithms are needed for controlling such robots. A 2-Layer fuzzy controller can deal with many inputs as well as many outputs, and its overall structure is much simpler than that of a general fuzzy controller. The main problem encountered in fuzzy control is the design of the fuzzy controller. In this paper, the fuzzy controller is designed by the schema co-evolutionary algorithm. This algorithm can quickly and easily find a global solution. Therefore, the schema co-evolutionary algorithm is used to design a 2-layer fuzzy controller in this study. We apply it to a mobile robot and verify the efficacy of the 2-layer fuzzy controller and the schema co-evolutionary algorithm through the experiments.

Optimal Design of a 2-Layer Fuzzy Controller Using the Schema Co-Evolutionary Algorithm

  • Byun, Kwang-Sub;Sim, Kwee-Bo
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제4권3호
    • /
    • pp.341-346
    • /
    • 2004
  • Nowadays, versatile robots are developed around the world. Novel algorithms are needed for controlling such robots. A 2-Layer fuzzy controller can deal with many inputs as well as many outputs, and its overall structure is much simpler than that of a general fuzzy controller. The main problem encountered in fuzzy control is the design of the fuzzy controller. In this paper, the fuzzy controller is designed by the schema co-evolutionary algorithm. This algorithm can quickly and easily find a global solution. Therefore, the schema co-evolutionary algorithm is used to design a 2-layer fuzzy controller in this study. We apply it to a mobile robot and verify the efficacy of the 2-layer fuzzy controller and the schema co-evolutionary algorithm through the experiments.

게임 이론에 기반한 공진화 알고리즘 (Game Theory Based Co-Evolutionary Algorithm (GCEA))

  • 심귀보;김지윤;이동욱
    • 한국지능시스템학회논문지
    • /
    • 제14권3호
    • /
    • pp.253-261
    • /
    • 2004
  • 게임 이론은 의사 결정 문제와 관련 된 연구와 함께 정립 된 수학적 분석법으로써 1928년 Von Neumann이 유한개의 순수전략이 존재하는 2인 영합게임은 결정적(deterministic)이라는 것을 증명함으로써 수학적 기반을 정립하였고 50년대 초, Nash는 Von Neumann의 이론을 일반화하는 개념을 제안함으로써 현대적 게임이론의 장을 열었다. 이후 진화 생물학 연구자들에 의해 고전적인 게임 이론의 가정에 해당하는 참가자들의 합리성(rationality) 대신 다윈 선택(Darwinian selection)에 의해 게임의 해를 탐색하는 것이 가능하다는 것이 밝혀지게 되었고 진화 생물학자 Maynard Smith에 의해 진화적 안정 전략(Evolutionary Stable Strategy: ESS)의 개념이 정립되면서 현대적 게임 이론으로써 진화적 게임 이론이 체계화 되었다. 한편 이와 같은 진화적 게임 이론에 관한 연구와 함께 생태계의 공진화를 이용한 컴퓨터 시뮬레이션이 1991년 Hillis에 의해 처음으로 시도되었으며 Kauffman은 다른 종들 간의 공진화적 동역학(dynamics)을 분석하기 위한 NK 모델을 제안하였다. Kauffman은 이 모델을 이용하여 공진화 현상이 어떻게 정적 상태(static state)에 이르며 이 상태들은 게임 이론에서 소개되어진 내쉬 균형이나 ESS에 해당한다는 것을 보여주었다. 이후, 몇몇 연구자들 게임 이론과 진화 알고리즘에 기반한 연산 모델들을 제시해 왔으나 실용적인 문제의 적용에 대한 연구는 아직 미흡한 편이다. 이에 본 논문에서는 게임 이론에 기반 한 공진화 알고리즘을(Game theory based Co-Evolutionary Algorithm: GCEA) 제안하고 이 알고리즘을 이용하여 공진화적인 문제들을 효과적으로 해결할 수 있음을 확인하는 것을 목표로 한다.

GA-Hard 문제를 풀기 위한 공진화 모델 (Co-Evolutionary Model for Solving the GA-Hard Problems)

  • 이동욱;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제15권3호
    • /
    • pp.375-381
    • /
    • 2005
  • 일반적으로 유전자 알고리즘은 최적 시스템을 디자인하는데 주로 이용된다. 하지만 알고리즘의 성능은 적합도 함수나 시스템 환경에 의해 결정된다. 두 개의 개체군이 꾸준히 상호작용하고 공진화 하는 공진화 알고리즘은 이러한 문제를 극복할 수 있을 것으로 기대된다. 본 논문에서는 GA가 풀기 어려운 GA-hard problem을 풀기 위하여 저자가 제안한 3가지 공진화 모델을 설명한다. 첫 번째 모델은 찾고자하는 해와 환경을 각각 경쟁하는 개체군으로 구성해 진화하는 방법으로 사용자의 환경설정에 의해 지역적 해를 찾는 것을 방지하는 경쟁적 공진화 알고리즘이다. 두 번째 모델은 호스트 개체군과 기생(스키마) 개체군으로 구성된 스키마 공진화 알고리즘이다. 이 알고리즘에서 스키마 개체군은 호스트 개체군에 좋은 스키마를 공급한다. 세 번째 알고리즘은 두 개체군이 서로 게임을 통해 진화하도록 하는 게임이론에 기반한 공진화 알고리즘이다. 각 알고리즘은 비주얼 서보잉, 로봇 주행, 다목적 최적화 문제에 적용하여 그 유효성을 입증한다.

다목적 함수 최적화를 위한 게임 모델에 기반한 공진화 알고리즘에서의 해집단의 다양성에 관한 연구 (Study on Diversity of Population in Game model based Co-evolutionary Algorithm for Multiobjective optimization)

  • 이희재;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제17권7호
    • /
    • pp.869-874
    • /
    • 2007
  • 다목적 함수의 최적화 문제(Multiobjective optimization problems)의 경우에는 하나의 최적해가 존재하는 것이 아니라 '파레토 최적해 집합(Pareto optimal set)'이라고 알려진 해들의 집합이 존재한다. 이러한 이상적 파레토 최적해 집합과 가까운 최적해를 찾기 위한 다양한 해탐색 능력은 진화 알고리즘의 성능을 결정한다. 본 논문에서는 게임 모델에 기반한 공진화 알고리즘(GCEA: Game model based Co-Evolutionary Algorithm)에서 해집단의 다양성을 유지하여, 다양한 비지배적 파레토 대안해(non-dominated alternatives)들을 찾기 위한 방법을 제안한다.

Co-Evolutionary Algorithm for the Intelligent System

  • Sim, Kwee-Bo;Jun, Hyo-Byung
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1999년도 하계종합학술대회 논문집
    • /
    • pp.1013-1016
    • /
    • 1999
  • Simple Genetic Algorithm(SGA) proposed by J. H. Holland is a population-based optimization method based on the principle of the Darwinian natural selection. The theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. Although GA does well in many applications as an optimization method, still it does not guarantee the convergence to a global optimum in GA-hard problems and deceptive problems. Therefore as an alternative scheme, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve. In this paper we propose an extended schema theorem associated with a schema co-evolutionary algorithm(SCEA), which explains why the co-evolutionary algorithm works better than SGA. The experimental results show that the SCEA works well in optimization problems including deceptive functions.

  • PDF

Co-Evolutionary Algorithms for the Realization of the Intelligent Systems

  • Sim, Kwee-Bo;Jun, Hyo-Byung
    • Journal of the Korean Society for Industrial and Applied Mathematics
    • /
    • 제3권1호
    • /
    • pp.115-125
    • /
    • 1999
  • Simple Genetic Algorithm(SGA) proposed by J. H. Holland is a population-based optimization method based on the principle of the Darwinian natural selection. The theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis. Although GA does well in many applications as an optimization method, still it does not guarantee the convergence to a global optimum in some problems. In designing intelligent systems, specially, since there is no deterministic solution, a heuristic trial-and error procedure is usually used to determine the systems' parameters. As an alternative scheme, therefore, there is a growing interest in a co-evolutionary system, where two populations constantly interact and co-evolve. In this paper we review the existing co-evolutionary algorithms and propose co-evolutionary schemes designing intelligent systems according to the relation between the system's components.

  • PDF