
J . KSIAM Vo l.3 , No.1, 115- 125, 1999

Co-Evolutionary Algorithms for the Realization of
the Intelligent Systems

Kwee-Bo Sim and Hyo-Byung Jun

Abstract
Simple Genetic Algorithm(SGA) proposed by J. H. Holland is a population-based
optimization method based on the principle of the Darwinian natural selection. The
theoretical foundations of GA are the Schema Theorem and the Building Block Hypothesis.
Although GA does well in many applications as an optimization method, still it does not
guarantee the convergence to a global optimum in some problems. In designing intelligent
systems, specially , since there is no deterministic solution, a heuristic trial-and error
procedure is usually used to determine the systems' parameters. As an alternative scheme,
therefore, there is a growing interest in a co-evolutionary system, where two populations
constantly interact and co-evolve. In this paper we review the existing co-evolutionary
algorithms and propose co-evolutionary schemes designing intelligent systems according to
the relation between the system's components.

Ⅰ . Introduction1)

The concept of natural selection has influenced our view of biological systems
tremendously. As a result of trying to model the evolutionary phenomena using
computer, evolutionary algorithms came up in 1960s through 1990s. Typically genetic
algorithm(GA), genetic programming(GP), evolutionary strategies(ES), and evolutionary
programming(EP) belong to the categories of EAs, and these have been successfully
applied to many different applications according to the solution representation and
genetic operators. The genetic algorithm was proposed by J. H. Holland [1][2] as a
computational model of living system's evolution process and a population-based
optimization method. GA can provide many opportunities for obtaining a global
optimal solution, but the performance of a system is deterministic depending on the
fitness function given by a system designer. Thus GA generally works on static
fitness landscapes.

However natural evolution works on dynamic fitness landscapes that change over
evolutionary time as a result of co-evolution. Also co-evolution between different
species or different organs results in the current state of complex natural systems. In
this point, there is a growing interest in co-evolutionary systems, where two
populations constantly interact and co-evolve in contrast with traditional single

Key words : Genetic Algorithm, Schema Theorem, Intelligent System, Co-Evolutoianary
Algorithm

115

Kwee-Bo Sim and Hyo-Byung Jun

population evolutionary algorithms. This co-evolution method is believed more similar
to biological evolution in nature than other evolutionary algorithms. Generally
co-evolution algorithms can be classified into two categories, which are predator-prey
co-evolution [3][4] and symbiotic co-evolution[5]. Also a new fitness measure in
co-evolution has been discussed in terms of "Red Queen effect"[6].

In this paper, we review the co-evolutionary algorithms and develop the relation
between two evolving population in terms of fitness function. Then we classify the
categories of the co-evolutionary algorithms using the fitness relation matrix. Also we
show some applications of the co-evolutionary algorithm with regard to designing the
intelligent systems. In the next section, the existing co-evolutionary algorithms are
reviewed, and in section Ⅲ we develop the fitness relation matrix and classify the
categories of the co-evolutionary algorithms. Then we demonstrate some applications
with regard to each co-evolutionary algorithm. Finally the paper is closed with
conclusions including some discussions about future research.

Ⅱ . Co-Evolutionary Algorithms

Recently evolutionary algorithms has been widely studied as a new approach to
artificial life and as a function optimization method. All of these typically work with
a single population of solution candidates scattered on the static landscape fixed by
the designer. In nature, however, various feedback mechanisms between the species
undergoing selection provide a strong driving force toward complexity. Generally
co-evolutionary algorithms can be classified into two categories, which are
predator-prey co-evolution and symbiotic co-evolution. In the next two sub-sections,
we review them in brief.

2.1 Predator-Prey Co-Evolution

Predator-prey relation is the most well-known example of natural co-evolution. As
future generations of predators develop better attacking strategies, there is a strong
evolutionary pressure for prey to defend themselves better. In such arms races,
success on one side is felt by the other side as failure to which one must respond in
order to maintain one's chances of survival. This, in turn, calls for a reaction of the
other side. This process of co-volution can result in a stepwise increase in complexity
of both predator and prey[3]. Hillis[4] proposed this concept with a problem of
finding minimal sorting network for a given number of data. Also co-evolution
between neural networks and training data was proposed in the concept of predator
and prey[7].

A new fitness measure in co-evolution is studied in terms of dynamic fitness
landscape. L. van Valen, a biologist, has suggested that the "Red Queen effect"
arising from co-evolutionary arms races has been a prime source of evolutionary
innovations and adaptations[6]. This means that the fitness of one species changes
depending on the other species's.

2.2 Sy mbiotic Co-Evolution

Symbiosis is the phenomenon in which organism of different species live together
in close association, resulting in a raised level of fitness for one or more of the
organisms. In contrast of predator-prey, this symbiosis has cooperative or positive

116

Co-Evolutionary Algorithms for the Realization

aspects between different species. Paredis[5] proposed a symbiotic co-evolution in
terms of SYMBIOT, which uses two co-evolving populations. One population contains
permutations (orderings), the other one consists of solution candidates to the problem
to be solved. A permutation is represented as a vector that describes a reordering of
solution genes. Another approach to symbiotic co-evolution is host-parasite
relation[8][9]. Just as do other co-evolutionary algorithms, two co-evolving populations
are used. One is called host-population which consists of the candidates of solution,
the other contains schemata of the solution space. This idea is based on the Schema
Theorem and the Building Block Hypothesis[2].

Ⅲ . Fitness Relation

In contrast with traditional evolutionary algorithms with single population,
co-evolutionary systems have two populations which constantly interact and co-evolve.
Here, we formulate the relation of those two populations in terms of fitness.

3.1 Relation matrix between two p op ulations

Let X = {x 1 , x 2 , , x n } be a primary population at a certain generation, and
Y = {y 1 , y 2 , ,y m } be a secondary population at the same generation. Then f R (x , y) is

a normalized fitness function that has 0 f R (x , y) 1. Since this fitness value
represents the degree of fitness, it can be considered as a membership value of the
fuzzy set 'fitness'. Now we define a fitness relation matrix R as follows:

R (X , Y) =

f R (x 1 , y 1) f R (x 1 , y 2) f R (x 1 , y m)
f R (x 2 , y 1) f R (x 2 , y 2) f R (x 2 , y m)

f R (x n , y 1) f R (x n , y 2) f R (x n , y m)

(1)

where f R (x i , y i) is the fitness value acquired by the individuals x i and y i , and n , m

are the sizes of primary and secondary populations, respectively.
Several fuzzy sets are combines to produce a single set by an aggregation

operation on fuzzy sets which is defined by[10]

h : [0 , 1] k [0 , 1] , k 2 (2)

such that

A (x) = h (A 1
(x) , A 2

(x) , , A k
(x)) , x U (3)

where A k is a fuzzy set in the universe of discourse U and A k
(x) is the grade of

membership of x in A k . Generally, the aggregation operators are called averaging
operators if they lie between the min operator and the max operator, such as

117

Kwee-Bo Sim and Hyo-Byung Jun

m in (a 1 , a 2 , , a n) h (a 1 , a 2 , , a n) m ax (a 1 , a 2 , , a n) (4)

where a i = A i
(x) , i = 1, , k . One typical parametric averaging operator is the

generalized means which is defined as

h (a 1 , a 2 , , a k) (a 1 + a 2 + + a k

k)
1/

(5)

where is a real number but 0 . The generalized means covers the entire interval
between the min and the max operators, because when approaches - ,
h (a 1 , a 2 , , a k) becomes min (a 1 , a2 , , a k) , and when approaches ,
h (a 1 , a 2 , , a k) becomes max (a 1 , a2 , , a k) .

In the next sub-section we define and classify the categories of the co-evolutionary
algorithm using the fitness relation matrix and the aggregation operators. Also we
extract the boundaries of the system's performance from the generalized means
operator.

3.2 Classif ication of the co-evolutionary algorithm using relation matrix

We will now classify and define the categories of the co-evolutionary algorithms
using the above fitness relation matrix. We call a co-evolutionary algorithm a
promotive (cooperative) one if the following conditions are satisfied:

f [R X] (x) =
h
y

f R (x , y) (6)

f [R Y] (y) =
h
x

f R (x , y) (7)

where f [R X] (x) and f [R Y] (y) are the fitness functions of the primary population and
the secondary population, respectively, and down arrow means the generalized
projection of R onto each population. Also a co-evolutionary algorithm is called a
suppressive(competitive) one if the following conditions are satisfied:

f [R X] (x) =
h
y

f R (x , y) (8)

f [R Y] (y) =
h
x f R (x , y) (9)

where R is the complement of the relation matrix R , defined by the fitness function,
such as

f R (x , y) 1 - f R (x , y) . (10)

Easily we can see from the above equation that the fitness direction of the secondary
population is opposite to that of the primary one in the suppressive co-evolutionary
algorithm.

Also the performance boundaries of the system can be found from the

118

Co-Evolutionary Algorithms for the Realization

aggregation operator h . If h is max, a fitness value of a certain individual
indicates the upper boundary of that individual's capacity at the given time. If h is
min, in the other hand, a fitness value of a certain individual indicates the lower
boundary of that individual's capacity at the given time.

Ⅳ . Applications

4.1 Schema Co-Evolutionary A lgorithm [8][9]

As above-mentioned, the parasite-population searches useful schemata and delivers
the genetic information to the host-population by parasitizing process. We explain this
parasitizing process by means of fitness measure of the parasite-population and the
alteration of a string in the host-population according to the fitness measure. The
fitness of a schema in the parasite-population depends on n strings sampled in the
host-population. In the context of a computational model of co-evolution, the
parasitizing means that the characters of a string are exchanged by the fixed
characters of a schema. The other positions of the string, i.e., the same positions of
don't-care symbol in the schema, hold their own values. The process of host-parasite
co-evolution, in brief, is that a useful schema found by the parasite- population is
delivered to the host-population according to the fitness proportionate, and the
evolutionary direction of the parasite-population is determined by the host-population.

Fig. 1. A block diagram of schema co-evolution

The fitness F y of a string y in the parasite- population is determined as follows:

Step 1 . Determine a set of strings of the host-population to be parasitized. Namely
select randomly n strings in the host-population, which are parasitized by
a schema y .

Step 2 . Let the sampled strings as x 1 , , x n , and the parasitized strings as
x 1y , , x ny . A parasitized string is a sampled string after parasitized
by a schema y .

Step 3 . In order to determine the fitness of a string y in the parasite-population,
we set a fitness function of one time parasitizing as improvement of the

119

Kwee-Bo Sim and Hyo-Byung Jun

fitness.

f iy (k) = m ax [0 , f (x iy , k) - f (x i , k)] (i = 1, , n) (11)

where f (x i , k) is the fitness of a string x i at generation k , and f (x iy , k) is
the fitness of a string x iy which is parasitized by a schema y .

Step 4 . Then the fitness F y of a schema y in the parasite-population is

F y =
n

i = 1
f iy . (12)

By exchanging a string x i for x iy which is a string having maximum value of f iy

, still one of the strings parasitized by a schema y , the genetic information acquired
by parasitizing is delivered to the host-population. As described in equation (12), the
fitness of a schema in the parasite-population is depending on the parasitized strings
in the host-population. We next derive an extended schema theorem associated with
this host-parasite co-evolution.

If a string y in the parasite-population represents a schema H , it is clear that the
above parasitizing process can be interpreted, in the context of useful schemata, as a
process of increasing the number of instances of a schema H in the host-population.
If we recall the original schema theorem, the number of instances of a schema H at
the generation k is changed by the amount of newly generated instances of that
schema. When the co-evolution is considered the number of instances m ' (H , k) of a
schema H in the host-population at the generation k is expressed by

m ' (H , k) = m (H , k) + m (H , k) (13)

where m (H , k) is the original number of instances of a schema H in the
host-population, and m (H , k) is the increased number of instances by the parasitizing
process. Since the number of instances of a schema is increased when at least one of
the parasitized strings has improved, it can be formulated as follows:

m (H , k) =
y I H

(F y (k) >0)

=
y I H

(
n

i = 1
f iy (k) >0)

=
y I H

(
n

i = 1
m ax [0 ,f (x iy , k) - f (x ik)])

(14)

where (A) 1 if a proposition A is true; 0 otherwise. This equation means that
since the string x i is exchanged for x iH in the case that the degree of improvement
in the fitness is above 0, the instances of a schema H in the host-population are
increased.

Also we can formulate the fitness of a schema H associated with host-parasite
co-evolution from its definition. Let us denote by f ' (H , k) the fitness of a schema
H after parasitized at the generation k . Then,

f ' (H , k) =
x I H

f (x , k) +
x i I H

f (x iH , k)

m (H , k) + m (H , k)
(15)

120

Co-Evolutionary Algorithms for the Realization

where I H is a set of instances of a schema H at the generation k and I H is a
index set of increased instances of a schema H after parasitized. Combining the
above equations, the schema theorem can be rewritten by

m (H , k + 1) m ' (H , k) f ' (H , k)
f (k) [1 - p c

(H)
l - 1

- p m o(H)] (16)

Since the fitness of a schema H is defined as the average fitness of all strings in
the population matched by that schema H , the fitness f ' (H , k) of a schema H after
parasitized can be approximated by f ' (H , t) f (H , t) . Especially, if the number of
strings in the host-population N H n , where n is the number of strings to be
parasitized, the above approximation makes sense for the large number of generation
sequences[2].

Consequently we obtain an extended schema theorem associated with host-parasite
co-evolution that is

m (H , k + 1) [m (H , k) + m (H , k)] f (H , k)
f (k) [1 - p c

(H)
l - 1

- p m o(H)] (17)

Compared with the original Schema Theorem, the above equation means that the
short, low-order, and above-average schema H would receive an exponentially
increasing number of strings in the next generation with higher order than SGA.
Additionally the parasitizing process gives more reliable results in finding an optimal
solution. Because the parasite-population explores the schema space, a global optimum
could be found more reliably in shorter time than SGA. When the schema containing
a solution does not exist in the population, SGA may fail to find global optima. In
the other hand, because the useful schema can be found by the parasite-population,
co-evolution gives much more opportunities to converge to global optima.

4.2 Fuzzy Rules and Membership Functions [11]

This example presents a new approach to automatic generation of FLC based on
the concept of co-evolution algorithms. Our approach has two parallel evolution
processes which are rule base (RB) population and membership function(MF)
population.

Fig. 2. A block diagram of co-evolution of rule bases and membership functions

121

Kwee-Bo Sim and Hyo-Byung Jun

The overview of our approach is illustrated in Fig. 2. To apply genetic algorithms to
any problem, first the solution spaces should be represented by a chromosome. The
individual of the rule base population consists of a set of rules, so there are sets of
rules in the rule base population. If membership functions are partitioned into T
terms and there are l preconditions, then the maximum number of IF-THEN fuzzy
rules is T l . This means that the input space is divided into T l . Therefore, unless we
use all of the rules, null set problems occur when the given rule base cannot cover
the current input states. So we use a don't-care symbol in addition to the linguistic
terms for a rule chromosome. This don't-care symbol makes the preconditions so
inclusive that a small number of rules can cover the whole input space.

We use the normalized membership function partitioned with five terms. The
shape of each term is triangular except the two marginal terms. The triangular
membership function's shape is determined by the three points that are a center point
and left/right width points. We assume that the NL and PL terms have fixed center
points and the other three center points could be placed any position from -1 to 1
and all the left/right width of each terms could be from 0 to the maximum value
from its center point to the margin. For a variable the chromosome is consist of
(number of terms - 1)×3 bits real-valued string, where the first 4 bits represent the
width proportion between the neighbor center points and the last 8 bits represent the
width ratio of each term's left and right margin from its center point . If there are N
terms, N i input variables, and N o output variables, then the whole length of one
chromosome becomes 3×(N -1)×(N i+ N o) bits.

We verify the effectiveness of the proposed algorithm by applying it to an optimal
path planning of autonomous mobile robot . The objective of this problem is to find
an optimal path when static and moving obstacles exist . The raw fitness measure is
formulated by,

f R = (1 -
D r

D G
)

T m in

T
(N N - N n)

N N
(18)

where T is consuming time, N n is the number of null set, T m in is minimum time
required to reach the goal, and N N is maximum number of null set . The fitness
functions of membership function and rule base are set by,

f [R X] (x) =
h
y

f R (x , y) (19)

f [R Y] (y) =
h
x

f R (x , y) (20)

122

Co-Evolutionary Algorithms for the Realization

4.3 Neural Network and Training Pattern [12][13]

Fig. 3. Co-evolution of networks and training examples

In this example, the primary population is composed of the structure of neural
networks and the secondary population is training examples as shown in figure 3. In
order to improve the generalization performance in dynamic environments, it is very
important to select nice training examples. However, most conventional neural learning
algorithms assume training examples to be provided by external teacher. On the
contrary, useful examples are generated automatically by the genetic search process in
co-evolutionary method. Also the structure of neural networks co-evolve with training
examples. The fitness of primary population and secondary population are as follows:

f (x i) =
j A

f (x i , y j) / L (21)

f (y j) =
i B

f (y j , x i) / K j (22)

Here,

L is the evaluation times of x i,
f (x i , y j) is the mutual fitness of x i and y j (= 1 - f (y j , x i)),
A is the index set of secondary individuals that are selected by a primary
individual x i ,,

B is the index set of primary individuals that select secondary individual y j ,
and

K j is the selected times of y j .

That is to say, the fitness of the primary individual is calculated by average of
mutual fitness for L secondary individuals, and the fitness of secondary individual is
calculated by average of mutual fitness for K j primary individuals that select it .

We applied it to the visual serving of RV-M2 robot manipulators. Also we
monitor co-evolutionary progress using the ancestral opponent contests[6] as shown in
figure 4.

123

Kwee-Bo Sim and Hyo-Byung Jun

Fig. 4. Ancestral opponent contest method

Ⅳ . Conclusions

In this paper, we reviewed the existing co-evolutionary algorithms and developed
the fitness relation matrix in terms of mutual fitness. Also we classified the categories
of the co-evolutionary algorithm using the fitness relation matrix and showed some
applications of the co-evolutionary algorithms with regard to designing the intelligent
systems. Because there is no deterministic solution in designing intelligent systems, a
heuristic trial-and error procedure is usually used to determine the systems'
parameters. As an alternative scheme we proposed co-evolutionary algorithms, where
two populations constantly interact and co-evolve.

REFERENCES

[1] John. H. Holland, Adap tation in Natural and Artif icial System : An Introductory
analysis with App lications to Biology, Control, and Artif icial Intelligence, A
Bradford Book, The MIT Press, 1994.

[2] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs,
Third Edition, Springer-Verlag, pp. 265-281, 1995.

[3] Seth G. Bullock, "Co-evolutionary Design: Implications for Evolutionary Robotics,"
The 3rd Europ ean Conf erence on Artif icial Lif e, 1995.

[4] W. Daniel Hillis, "Co-Evolving Parasites Improve Simulated Evolution as an
Optimization Procedure," Artif icial Lif e II , Vol. X, pp.313-324, 1991.

[5] Jan Paredis, "Co-evolutionary Computation," Artif icial Lif e, Vol. 2, No. 4,
pp.355-375, 1995.

[6] D. Cliff, G. F. Miller, "Tracking The Red Queen: Measurements of adaptive
progress in co-evolutionary simulations," COGS Technical Rep ort CSRP363,
University of Sussex, 1995.

[7] D. W. Lee, H. B. Jun, K. B. Sim, "A Co-Evolutionary Approach for Learning
and Structure Search of Neural Networks," Proc. of KFIS Fall Conf erence '97,
Vol. 7, No. 2, pp. 111-114, 1997.

[8] K. B. Sim, H. B. Jun, "Co-Evolutoinary Algorithm and Extended Schema
Theorem," J. KSIAM , Vol. 2, No. 1, 95-110, 1998.

124

Co-Evolutionary Algorithms for the Realization

[9] H. B. Jun, D. J. Lee, K. B. Sim, "Structure Optimization of Neural Network
using Co-Evolution," J. KITE , Vol. 35-S, No. 4, pp. 67-75, 1998.

[10]Chin-Teng Lin and C.S. George Lee, Neural Fuzzy Systems : A Neuro-Fuzy
Synergism to Intelligent Systems, Prentice Hall PTR, 1996.

[11]H.B. Jun, C.S. Jung, K.B. Sim, "Co-Evolution of Fuzzy Rules and Membership
Functions," Proc. AFSS, pp. 601-603, 1998.

[12]C.S. Jung, D.W. Lee, K.B. Sim, "Structure Search of Neural Networks Based on
Co-Evolutionary Concept," Proc. ICEE '98, Vol. 1, pp. 970-973, 1998.

[13]D.W. Lee, K.B. Sim, "Structure Optimization and Learning of Neural Networks
by Co-Evolution," Proc. 3rd AROB , Vol. 2, pp. 462-465, 1998.

Dept. of Control and Instrumentation Eng., Chung-Ang University
221, Huksuk-Dong, Dongjak-Ku, Seoul 156-756, Korea
E-mail : kbsim@cau.ac.kr

125

