• Title/Summary/Keyword: co-evaporation method

Search Result 173, Processing Time 0.026 seconds

Progress in the co-evaporation technologies developed for high performance REBa2Cu3O7-δ films and coated conductors

  • Lee, J.W.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.4
    • /
    • pp.5-11
    • /
    • 2012
  • In this review article, we focus on various co-evaporation technologies developed for the fabrication of high performance $REBa_2Cu_3O_{7-{\delta}}$ (RE: Y and Rare earth elements, REBCO) superconducting films. Compared with other manufacturing technologies for REBCO films such as sputtering, pulsed laser deposition (PLD), metal-organic deposition (MOD), and metal organic chemical vapor deposition (MOCVD), the co-evaporation method has a strong advantage of higher deposition rate because metal sources can be used as precursor materials. After the first attempt to produce REBCO films by the co-evaporation method in 1987, various co-evaporation technologies for high performance REBCO films have been developed during last several decades. The key points of each co-evaporation technology are reviewed in this article, which enables us to have a good insight into a new high throughput process, called as a Reactive Co-Evaporation by Deposition and Reaction (RCE-DR).

Influence of ITO-Electrode Deposition Method on the Electro-optical Characteristics of Blue LEDs (ITO 전극 형성 방법이 청색 발광 다이오드의 전기 광학적 특성에 미치는 영향)

  • Han, Jae-Ho;Kim, Sang-Bae;Jeon, Dong-Min
    • Journal of the Institute of Electronics Engineers of Korea SD
    • /
    • v.44 no.11
    • /
    • pp.43-50
    • /
    • 2007
  • We have investigated the electro-optical characteristics and reliability of LEDs with the Indium-Tin-Oxide (ITO) electrodes formed by different deposition methods: electron beam evaporation, sputtering, and hybrid method of electron beam evaporation and subsequent sputtering. The deposition method of the ITO electrode has significant influence on the electro-optical characteristics and reliability of LEDs. The LEDs with the ITO electrodes formed by sputtering and electron beam evaporation have problems caused by sputtering damage and increased electrical resistance, respectively, and the problems have been solved by the hybrid method.

Cu(In,Ga)$Se_2$ Absorber Layer Prepared by Electron Beam Evaporation Method for Thin Film Solar Cell

  • Li, Zhao-Hui;Cho, Eou-Sik;Noh, Gap-Seong;Lim, Jae-Eok;Pahk, Heui-Jae;Bae, Kyung-Bin;Kwon, Sang-Jik
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.1564-1567
    • /
    • 2009
  • Cu(In,Ga)$Se_2$ (CIGS) thin films were formed using CIGS bulk by electron-beam evaporation method with an evaporation current from 20 mA to 90 mA. The experimental results showed that the chemical compositions and the properties of CIGS films varied with the different evaporation current. The Cu-rich CIGS film was deposited successfully with a band gap of 1.20 eV when the evaporation current was 90 mA.

  • PDF

Angular dependence of critical current of SmBCO coated conductor fabricated by co-evaporation method

  • Kim, Ho-Sup;Ha, Hong-Soo;Oh, Sang-Soo;Song, Kyu-Jeong;Ko, Rock-Kil;Ha, Dong-Woo;Kim, Tae-Hyung;Youm, Do-Jun;Lee, Nam-Jin;Moon, Seung-Hyun;Yoo, Sang-Im;Park, Chan
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.2
    • /
    • pp.16-19
    • /
    • 2008
  • Angular dependence of critical current density of SmBCO coated conductor fabricated by co-evaporation method was investigated. For comparison, three samples were fabricated by a co-evaporation method and one sample was fabricated by a pulsed laser deposition process. The deposition system, named EDDC (Evaporation using Drum in Dual Chambers), is a batch type co-evaporation system, which is composed of reaction chamber and evaporation chamber. The normalized critical current density ratio ($I_c/I_c$(H//ab-plane)) of EDDC-SmBCO samples was found to be higher than that of PLD-YBCO sample in the whole range of angle. While the EDDC-SmBCO samples evidently had a peak at the angle of H//c-axis in the plot of the angular dependence of critical current, the normalized critical current of PLD-YBCO sample decreased monotonically without any peak as angle increased. The field dependence of critical current under the magnetic field parallel to the normal direction of those samples showed similar aspect in the range of $0\;G{\sim}5000\;G$.

MOLECULAR SCALE MECHANISM ON EVAPORATION AND REMOVAL PROCESS OF ADHERENT MOLECULES ON SURFACE BY BURNT GAS

  • Yang, Y.J.;Lee, C.W.;Kadosaka, O.;Shibahara, M.;Katsuki, M.;Kim, S.P.
    • International Journal of Automotive Technology
    • /
    • v.7 no.2
    • /
    • pp.121-128
    • /
    • 2006
  • The interaction between adherent molecules and gas molecules was modeled in the molecular scale and simulated by the molecular dynamics method in order to understand evaporation and removal processes of adherent molecules on metallic surface using high temperature gas flow. Methanol molecules were chosen as adherent molecules to investigate effects of adhesion quantity and gas molecular collisions because the industrial oil has too complex structures of fatty acid. Effects of adherent quantity, gas temperature, surface temperature and adhesion strength for the evaporation rate of adherent molecules and the molecular removal mechanism were investigated and discussed in the present study. Evaporation and removal rates of adherent molecules from metallic surface calculated by the molecular dynamics method showed the similar dependence on the surface temperature shown in the experimental results.

Structural characteristics of ZnO nanostructures synthesized by the thermal evaporation method (열증착법으로 합성된 ZnO 나노 구조체의 구조적 특성)

  • Bang, Sin-Young;Kim, Woo-Sik;Chung, Jun-Ho;Choi, Bong-Geun;Shim, Kwang-Bo
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.18 no.2
    • /
    • pp.81-86
    • /
    • 2008
  • ZnO nanowires were synthesized by the thermal evaporation method and their growth mechanisms were confirmed by the characterization of the structural features depending on the growth conditions. The increase of vaporization temperature accelerates the growth rate and morphologies of ZnO nanowires were drastically changed at the temperature over 1000$^{\circ}C$, because of changed $CO/CO_2$ partial pressure. Au particles play their role on growth of ZnO nanowire as catalyst at growth temperature over 700$^{\circ}C$. The synthesized ZnO nanowires exhibit blue emission at 380 nm.

Preparation and Characteristics of $CdS_{1-x}Te_{1-x}$ Ternary Polycrystalline Thin Films by Co-evaporation (동시 열증착법에 의한 $CdS_{1-x}Te_{1-x}$ 삼원계 다결정 박막의 제작과 특성)

  • 박민서;송복식;정성훈;문동찬;김선태
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.11a
    • /
    • pp.126-130
    • /
    • 1995
  • $CdS_{1-x}Te_{1-x}$ polycrystalline thin films were fabricated from CdS and CdTe powder by co-evaporation method at $10^{-6}$ Torr. The Optimum evaporation condition was substrate temperature $T_{s}$=$150^{\circ}C$, evaporation time t=30 min. XRD spectrums indicated that the crystal structure chanced from zinc blonde (x$\leq$0.22) to wurtzite (x$\geq$0.96) through mixed structure (0.22$\leq$0.74) as composition value x increase to CdS. Conductive type was n-type by hot point probe method. van der Pauw method was not applicable for x<0,5 due to high hall voltages, Electrical resistivity and Hall carrier mobility were decreased as x increase, while Hall carrier concentration was increased. The optical bandgap of $CdS_{1-x}Te_{1-x}$ polycrystalline thin films measure d at R.T. had quardratic form and the bowing parameter was fitted as 1.98eV for theoretical value of 2.0eV. I-V characteristics of In/CdTe/$CdS_{x}Te_{1-x}$Au Schottky diodes showed that CdS-rich one had better forward characteristics than CdTe-rich one.

  • PDF

Microstructure and CO Gas Sensing Properties of Ag-CuO-SnO2 Thin Films Prepared by Co-Evaporation and Thermal Oxidation (공증발과 열산화로 제조한 Ag-CuO-SnO2 박막에서 미세조직과 CO 가스 감지특성)

  • Ji, In-Geol;Han, Kyu-Suk;Oh, Jae-Hee;Ko, Tae-Gyung
    • Journal of the Korean Ceramic Society
    • /
    • v.46 no.4
    • /
    • pp.429-435
    • /
    • 2009
  • In this study, we investigated microstructure and the CO gas sensing properties of Ag-CuO-$SnO_2$ thin films prepared by co-evaporation and subsequently thermal oxidation at air atmosphere. The sensitivity of a Cu-Sn films, thermally oxidized at $600^{\circ}C$, is strongly affected by the amount of Cu. At Cu:7 wt%-Sn:93 wt%, the film exhibited a maximum sensitivity of ${\sim}2.3$ to CO gas of 1000 ppm at $300^{\circ}C$. In contrast, the sensitivity of a Sn-Ag film did not change significantly with the amount of Ag. An enhanced sensitivity of ${\sim}3.7$ was observed in the film with a composition of Ag:3 wt%-Cu:4 wt%-Sn:93 wt%, when thermally oxidized at $600^{\circ}C$. In addition, this thin film shows a response time of ${\sim}80$ sec and a recovery time of ${\sim}450$ sec to 1000 ppm CO gas. The results demonstrate that the CO sensitivity of the Ag-CuO-$SnO_2$ thin films may be closely associated with coexistence of $SnO_2$ and SnO phase, decrease in average particle size, and a porous microstructure. We also suggest that co-evaporation and followed by thermal oxidation is a very simple and effective method to prepare oxide gas sensor thin films.

Preparation and Evaluation of Bupivacaine Microspheres by a Solvent Evaporation Method (II) (용매증발법에 의한 부피바카인 마이크로스피어의 제조 및 평가 (II))

  • 곽손혁;이시범;이종수;이병철;황성주
    • YAKHAK HOEJI
    • /
    • v.45 no.6
    • /
    • pp.623-633
    • /
    • 2001
  • Various bupivacaine-loaded microspheres were prepared using poly(d,1-lactide) (PLA) and poly(d,1-lactic-co-glycolide) (PLGA) by a solvent evaporation method for the sustained release of drug. The effects of process conditions such as drug loading, polymer type and solvent type on the characteristics of microspheres were investigated. The prepared microspheres were characterized for their drug loading, size distribution, surface morphology and release kinetics. Drug loading efficiency and yield of PLGA micro- spheres were higher than those of PLA microspheres. The prepared microspheres had an average particle size below 5${\mu}{\textrm}{m}$. The particle size range of microspheres was 1.65~2.24${\mu}{\textrm}{m}$. As a result of SEM, the particle size of PLA microspheres was smaller than that of PLGA microspheres. In morphology studies, microspheres showed a spherical shape and smooth surface in all process conditions. In thermal analysis, bupivacaine-loaded microspheres showed no peaks originating from bupivacaine. This suggested that bupivacaine base was molecular-dispersed in the polymer matrix of microspheres. The release pattern of the drug from microspheres was evaluated for 96 hours. The initial burst release of bupivacaine base decreased with increasing the molecular weight of PLGA, and the drug from microspheres released slowly. In conclusion, bupivacaine-loaded microspheres were successfully prepared from poly(d,1-lactide) and poly (d,1- lactic-co-glycolide) polymers with different molecular weights allowing control of the release rate.

  • PDF

Experimental Studies on the Evaporative Heat Transfer Characteristics of CO2/Propane Refrigerant Mixtures in Horizontal Smooth and Micro-fin Tubes (이산화탄소/프로판 혼합냉매의 수평평활관 및 마이크로 핀관에서의 증발열전달에 관한 실험적 연구)

  • Cho, Jin-Min;Kim, Yong-Jin;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.32 no.4
    • /
    • pp.290-299
    • /
    • 2008
  • Evaporation heat transfer characteristics of $CO_2$/propane mixtures in horizontal smooth and micro-fin tubes have been investigated by experiment. The experiments were carried out for several test conditions of mass fluxes, heat fluxes, compositions of $CO_2$/propane refrigerant mixtures and tube geometries. Direct heating method was used for supplying heat to the refrigerant where the test tube was uniformly heated by electric current which was applied to the tube wall. Heat transfer coefficient data during evaporation process of $CO_2$/propane mixtures were measured for 5 m long smooth and micro-fin tubes with outer diameters of 5 mm, respectively. The tests were conducted at mass fluxes of 318 to 997 $kg/m^2s$, heat fluxes of 6 to 20 $kW/m^2$ and for several mixture compositions (100/0, 75/25, 50/50, 25/75, 100/0 by wt% of $CO_2$/propane). The differences of heat transfer characteristics between smooth and micro-fin tubes for various compositions of $CO_2$/propane refrigerant mixtures and the effect of mass flux, and heat flux on enhancement factor (EF) and penalty factor (PF) were presented.